SentenceTransformer based on google-bert/bert-base-cased

This is a sentence-transformers model finetuned from google-bert/bert-base-cased on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google-bert/bert-base-cased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • csv

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("Jimmy-Ooi/Tyrisonase_test_model")
# Run inference
sentences = [
    'NC(=S)c1cccnc1',
    'Cc1ccc(C(C)C)c(OC(=O)/C=C/c2ccc(O)cc2)c1',
    'C/C(=N\\NC(N)=S)c1cccc(NC(=O)C(F)(F)F)c1',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.9019, 0.8925],
#         [0.9019, 1.0000, 0.9356],
#         [0.8925, 0.9356, 1.0000]])

Training Details

Training Dataset

csv

  • Dataset: csv
  • Size: 286,816 training samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 8 tokens
    • mean: 38.33 tokens
    • max: 213 tokens
    • min: 8 tokens
    • mean: 37.78 tokens
    • max: 213 tokens
    • 0: ~50.50%
    • 2: ~49.50%
  • Samples:
    premise hypothesis label
    NC(=O)C@HNC(=O)OCc1cc(=O)c(O)co1 CNC(=S)N/N=C(\C)c1ccc(OC)cc1O 2
    CC/C(=N\NC(N)=S)c1ccc(C2CCCCC2)cc1 COc1cccc(C(=O)N2CCN(Cc3ccc(F)cc3)CC2)c1 2
    O=C(O)CSc1nnc(NC(=S)Nc2cccc(C(F)(F)F)c2)s1 CCCCOc1cccc2c1C(=O)c1c(OCCCC)cc(CO)cc1C2=O 0
  • Loss: SoftmaxLoss

Evaluation Dataset

csv

  • Dataset: csv
  • Size: 50,615 evaluation samples
  • Columns: premise, hypothesis, and label
  • Approximate statistics based on the first 1000 samples:
    premise hypothesis label
    type string string int
    details
    • min: 8 tokens
    • mean: 38.78 tokens
    • max: 213 tokens
    • min: 8 tokens
    • mean: 39.23 tokens
    • max: 213 tokens
    • 0: ~47.40%
    • 2: ~52.60%
  • Samples:
    premise hypothesis label
    O=Cc1ccoc1 Cn1c2ccccc2c2cc(/C=C/C(=O)c3cccc(NC(=O)c4ccccc4F)c3)ccc21 2
    COc1cc(C=O)ccc1OC(=O)CN1CCN(C)CC1 Oc1ccc(O)cc1 2
    O=C(c1cccc(N+[O-])c1)N1CCN(Cc2ccc(F)cc2)CC1 CNC(=S)N/N=C(\C)c1ccc(OC)cc1O 2
  • Loss: SoftmaxLoss

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.1
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu126
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers and SoftmaxLoss

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
2
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Jimmy-Ooi/Tyrisonase_test_model

Finetuned
(2655)
this model