SetFit with sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 128 tokens
- Number of Classes: 8 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| Lanche |
|
| Japonesa |
|
| Brasileira |
|
| Pizza/Massa |
|
| Sobremesa |
|
| Bebida |
|
| Petiscos |
|
| Árabe |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("JoaoVitorr/ifood-classification-model-v5")
# Run inference
preds = model("mocotó")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 1 | 2.1222 | 5 |
| Label | Training Sample Count |
|---|---|
| Bebida | 27 |
| Brasileira | 27 |
| Japonesa | 23 |
| Lanche | 30 |
| Petiscos | 27 |
| Pizza/Massa | 21 |
| Sobremesa | 46 |
| Árabe | 20 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (1e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0036 | 1 | 0.2488 | - |
| 0.1805 | 50 | 0.257 | - |
| 0.3610 | 100 | 0.2371 | - |
| 0.5415 | 150 | 0.2231 | - |
| 0.7220 | 200 | 0.198 | - |
| 0.9025 | 250 | 0.1617 | - |
| 1.0830 | 300 | 0.1286 | - |
| 1.2635 | 350 | 0.1051 | - |
| 1.4440 | 400 | 0.0908 | - |
| 1.6245 | 450 | 0.0757 | - |
| 1.8051 | 500 | 0.0619 | - |
| 1.9856 | 550 | 0.0465 | - |
| 2.1661 | 600 | 0.0355 | - |
| 2.3466 | 650 | 0.0304 | - |
| 2.5271 | 700 | 0.0218 | - |
| 2.7076 | 750 | 0.018 | - |
| 2.8881 | 800 | 0.0144 | - |
| 3.0686 | 850 | 0.0119 | - |
| 3.2491 | 900 | 0.0106 | - |
| 3.4296 | 950 | 0.008 | - |
| 3.6101 | 1000 | 0.0089 | - |
| 3.7906 | 1050 | 0.0083 | - |
| 3.9711 | 1100 | 0.0073 | - |
| 4.1516 | 1150 | 0.006 | - |
| 4.3321 | 1200 | 0.0058 | - |
| 4.5126 | 1250 | 0.0053 | - |
| 4.6931 | 1300 | 0.0052 | - |
| 4.8736 | 1350 | 0.0046 | - |
Framework Versions
- Python: 3.12.12
- SetFit: 1.1.3
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu126
- Datasets: 4.0.0
- Tokenizers: 0.22.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 38