ResNet-18 Roadwork Detector
ResNet-18 model for eroadwork
Model Details
- Architecture: ResNet-18
- Task: Binary image classification (Roadwork detection)
- Framework: PyTorch/torchvision
- Input Size: 224x224
- Number of Parameters: ~11M
- Output Type: sigmoid
Usage
import torch
from torchvision import models, transforms
from torch import nn
from PIL import Image
# Load model
model = models.resnet18(weights=None)
model.fc = nn.Linear(512, 2)
model.load_state_dict(torch.load('pytorch_model.bin'))
model.eval()
# Prepare image
transform = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406],
                       std=[0.229, 0.224, 0.225])
])
image = Image.open('your_image.jpg')
input_tensor = transform(image).unsqueeze(0)
# Inference
with torch.no_grad():
    output = model(input_tensor)
    prediction = torch.nn.functional.softmax(output, dim=1)
print(f"No Roadwork: {prediction[0][0]:.2%}")
print(f"Roadwork: {prediction[0][1]:.2%}")
Classes
- 0: No Roadwork
- 1: Roadwork
Submitted By
5Fc8jh7Yu65v7K4hi9s6d3MkkGJ8g4
Submission Time
2025-10-24 02:12:45
- Downloads last month
- 27
