LettuceDetect: Hungarian Hallucination Detection Model

LettuceDetect Logo

Model Name: lettucedect-mmbert-base-hu-v1 Organization: KRLabsOrg
Github: https://github.com/KRLabsOrg/LettuceDetect

Overview

LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for Retrieval-Augmented Generation (RAG) applications. This model is built on ModernBERT, which has been specifically chosen and trained becasue of its extended context support (up to 8192 tokens). This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context.

This is our Large model based on ModernBERT-large

Model Details

  • Architecture: mmBERT-base with extended context support (up to 8192 tokens)
  • Task: Token Classification / Hallucination Detection
  • Training Dataset: RagTruth-HU
  • Language: Hungarian

How It Works

The model is trained to identify tokens in the answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated.

Usage

Installation

Install the 'lettucedetect' repository

pip install lettucedetect

Using the model

from lettucedetect.models.inference import HallucinationDetector

detector = HallucinationDetector(
    method="transformer",
    model_path="KRLabsOrg/lettucedect-mmbert-base-hu-v1",
    lang="hu",
    trust_remote_code=True
)

contexts = [
    "Franciaország fővárosa Párizs. Franciaország népessége 67 millió fő. Franciaország területe 551 695 km²."
]
question = "Mennyi Franciaország népessége?"
answer = "Franciaország népessége 125 millió fő."

predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans")
print("Predictions:", predictions)

# Predictions: [{'start': 0, 'end': 38, 'confidence': 0.9475189447402954, 'text': 'Franciaország népessége 125 millió fő.'}]

Performance

Results on Translated RAGTruth-HU (Class 1: Hallucination)

We evaluate our Hungarian models on the translated RAGTruth dataset. As a prompt baseline we include meta-llama/Llama-4-Maverick-17B-128E-Instruct.

Language Model Precision (%) Recall (%) F1 (%) Maverick F1 (%) Δ F1 (%)
Hungarian meta-llama/Llama-4-Maverick-17B-128E-Instruct 38.70 96.82 55.30 55.30 +0.00
Hungarian lettucedect-mmBERT-small (ours) 70.20 72.51 71.33 55.30 +16.03
Hungarian lettucedect-mmBERT-base (ours) 76.62 69.21 72.73 55.30 +17.43

Note: Percentages are reported for the hallucination class (Class 1). Δ F1 is measured in percentage points vs. the Maverick baseline.

Citing

If you use the model or the tool, please cite the following paper:

@misc{Kovacs:2025,
      title={LettuceDetect: A Hallucination Detection Framework for RAG Applications}, 
      author={Ádám Kovács and Gábor Recski},
      year={2025},
      eprint={2502.17125},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2502.17125}, 
}
Downloads last month
26
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for KRLabsOrg/lettucedect-mmbert-base-hu-v1

Finetuned
(26)
this model

Dataset used to train KRLabsOrg/lettucedect-mmbert-base-hu-v1

Collection including KRLabsOrg/lettucedect-mmbert-base-hu-v1