adaamko commited on
Commit
6cd1913
·
verified ·
1 Parent(s): 8e82636

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +76 -166
README.md CHANGED
@@ -1,199 +1,109 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
 
88
- #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
174
 
175
- **BibTeX:**
 
 
 
 
 
176
 
177
- [More Information Needed]
 
 
 
 
178
 
179
- **APA:**
 
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ language:
5
+ - hu
6
+ base_model:
7
+ - jhu-clsp/mmBERT-small
8
+ pipeline_tag: token-classification
9
+ tags:
10
+ - token classification
11
+ - hallucination detection
12
+ - transformers
13
+ - question answer
14
+ datasets:
15
+ - KRLabsOrg/ragtruth-hu-translated
16
  ---
17
 
 
18
 
19
+ # LettuceDetect: Hungarian Hallucination Detection Model
20
 
21
+ <p align="center">
22
+ <img src="https://github.com/KRLabsOrg/LettuceDetect/blob/main/assets/lettuce_detective.png?raw=true" alt="LettuceDetect Logo" width="400"/>
23
+ </p>
24
 
25
+ **Model Name:** lettucedect-mmbert-base-hu-v1
26
+ **Organization:** KRLabsOrg
27
+ **Github:** https://github.com/KRLabsOrg/LettuceDetect
28
 
29
+ ## Overview
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ LettuceDetect is a transformer-based model for hallucination detection on context and answer pairs, designed for Retrieval-Augmented Generation (RAG) applications. This model is built on **ModernBERT**, which has been specifically chosen and trained becasue of its extended context support (up to **8192 tokens**). This long-context capability is critical for tasks where detailed and extensive documents need to be processed to accurately determine if an answer is supported by the provided context.
32
 
33
+ **This is our Large model based on ModernBERT-large**
34
 
35
+ ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
 
37
+ - **Architecture:** mmBERT-base with extended context support (up to 8192 tokens)
38
+ - **Task:** Token Classification / Hallucination Detection
39
+ - **Training Dataset:** RagTruth-HU
40
+ - **Language:** Hungarian
41
 
42
+ ## How It Works
43
 
44
+ The model is trained to identify tokens in the answer text that are not supported by the given context. During inference, the model returns token-level predictions which are then aggregated into spans. This allows users to see exactly which parts of the answer are considered hallucinated.
45
 
46
+ ## Usage
47
 
48
+ ### Installation
49
 
50
+ Install the 'lettucedetect' repository
51
 
52
+ ```bash
53
+ pip install lettucedetect
54
+ ```
55
 
56
+ ### Using the model
57
 
58
+ ```python
59
+ from lettucedetect.models.inference import HallucinationDetector
60
 
61
+ detector = HallucinationDetector(
62
+ method="transformer",
63
+ model_path="KRLabsOrg/lettucedect-mmbert-base-hu-v1",
64
+ lang="hu",
65
+ trust_remote_code=True
66
+ )
67
 
68
+ contexts = [
69
+ "Franciaország fővárosa Párizs. Franciaország népessége 67 millió fő. Franciaország területe 551 695 km²."
70
+ ]
71
+ question = "Mennyi Franciaország népessége?"
72
+ answer = "Franciaország népessége 125 millió fő."
73
 
74
+ predictions = detector.predict(context=contexts, question=question, answer=answer, output_format="spans")
75
+ print("Predictions:", predictions)
76
 
77
+ # Predictions: [{'start': 0, 'end': 38, 'confidence': 0.9475189447402954, 'text': 'Franciaország népessége 125 millió fő.'}]
78
+ ```
79
 
 
80
 
81
+ ## Performance
82
 
83
+ **Results on Translated RAGTruth-HU (Class 1: Hallucination)**
84
 
85
+ We evaluate our Hungarian models on the translated [RAGTruth](https://aclanthology.org/2024.acl-long.585/) dataset. As a prompt baseline we include **meta-llama/Llama-4-Maverick-17B-128E-Instruct**.
86
 
87
+ | Language | Model | Precision (%) | Recall (%) | F1 (%) | Maverick F1 (%) | Δ F1 (%) |
88
+ |----------|-----------------------------------------|---------------|------------|--------|-----------------|----------|
89
+ | Hungarian | meta-llama/Llama-4-Maverick-17B-128E-Instruct | 38.70 | **96.82** | 55.30 | 55.30 | +0.00 |
90
+ | Hungarian | lettucedect-mmBERT-small (ours) | 70.20 | 72.51 | 71.33 | 55.30 | **+16.03** |
91
+ | Hungarian | lettucedect-mmBERT-base (ours) | **76.62** | 69.21 | **72.73** | 55.30 | **+17.43** |
92
 
93
+ *Note:* Percentages are reported for the hallucination class (Class 1). Δ F1 is measured in percentage points vs. the Maverick baseline.
94
 
95
+ ## Citing
96
 
97
+ If you use the model or the tool, please cite the following paper:
98
 
99
+ ```bibtex
100
+ @misc{Kovacs:2025,
101
+ title={LettuceDetect: A Hallucination Detection Framework for RAG Applications},
102
+ author={Ádám Kovács and Gábor Recski},
103
+ year={2025},
104
+ eprint={2502.17125},
105
+ archivePrefix={arXiv},
106
+ primaryClass={cs.CL},
107
+ url={https://arxiv.org/abs/2502.17125},
108
+ }
109
+ ```