SentenceTransformer based on klue/roberta-base
This is a sentence-transformers model finetuned from klue/roberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: klue/roberta-base
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'딱딱한 모자를 쓴 남자가 건물 프레임 앞에 주차된 빨간 트럭의 침대를 쳐다본다.',
'한 남자가 트럭을 보고 있다.',
'남자가 자고 있다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.865 |
| spearman_cosine | 0.8668 |
| pearson_manhattan | 0.8558 |
| spearman_manhattan | 0.8607 |
| pearson_euclidean | 0.8562 |
| spearman_euclidean | 0.8613 |
| pearson_dot | 0.8302 |
| spearman_dot | 0.8276 |
| pearson_max | 0.865 |
| spearman_max | 0.8668 |
Training Details
Training Datasets
Unnamed Dataset
- Size: 568,640 training samples
- Columns:
sentence_0,sentence_1, andsentence_2 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 4 tokens
- mean: 19.21 tokens
- max: 128 tokens
- min: 3 tokens
- mean: 18.29 tokens
- max: 93 tokens
- min: 4 tokens
- mean: 14.61 tokens
- max: 57 tokens
- Samples:
sentence_0 sentence_1 sentence_2 발생 부하가 함께 5% 적습니다.발생 부하의 5% 감소와 함께 11.발생 부하가 5% 증가합니다.어떤 행사를 위해 음식과 옷을 배급하는 여성들.여성들은 음식과 옷을 나눠줌으로써 난민들을 돕고 있다.여자들이 사막에서 오토바이를 운전하고 있다.어린 아이들은 그 지식을 얻을 필요가 있다.응, 우리 젊은이들 중 많은 사람들이 그걸 배워야 할 것 같아.젊은 사람들은 배울 필요가 없다. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Unnamed Dataset
- Size: 5,777 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 17.61 tokens
- max: 65 tokens
- min: 3 tokens
- mean: 17.66 tokens
- max: 76 tokens
- min: 0.0
- mean: 0.54
- max: 1.0
- Samples:
sentence_0 sentence_1 label 몰디브 대통령이 경찰의 반란 이후 사임하고, 시위몰디브 대통령이 몇 주 동안의 시위 끝에 그만두다.0.6799999999999999사자가 밀폐된 지역을 걷고 있다.사자가 주위를 돌아다니고 있다.0.52한 소년이 노래를 부르고 피아노를 치고 있다.한 소년이 피아노를 치고 있다.0.6 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsnum_train_epochs: 5batch_sampler: no_duplicatesmulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 8per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | sts-dev_spearman_max |
|---|---|---|---|
| 0.3458 | 500 | 0.4123 | - |
| 0.6916 | 1000 | 0.3009 | 0.8365 |
| 1.0007 | 1447 | - | 0.8610 |
| 1.0367 | 1500 | 0.259 | - |
| 1.3824 | 2000 | 0.1301 | 0.8580 |
| 1.7282 | 2500 | 0.0898 | - |
| 2.0007 | 2894 | - | 0.8668 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.2.2+cu121
- Accelerate: 0.31.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for KYUNGHYUN9/ko-sroberta-itos-training-example_v0.02
Base model
klue/roberta-baseEvaluation results
- Pearson Cosine on sts devself-reported0.865
- Spearman Cosine on sts devself-reported0.867
- Pearson Manhattan on sts devself-reported0.856
- Spearman Manhattan on sts devself-reported0.861
- Pearson Euclidean on sts devself-reported0.856
- Spearman Euclidean on sts devself-reported0.861
- Pearson Dot on sts devself-reported0.830
- Spearman Dot on sts devself-reported0.828
- Pearson Max on sts devself-reported0.865
- Spearman Max on sts devself-reported0.867