SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("LamaDiab/NewMiniLM-V15Data-128BATCH-SemanticEngine")
# Run inference
sentences = [
'parker ingenuity ct black lacquer so959210',
' pen',
'lagu-family barber shop toy',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.2524, -0.0132],
# [ 0.2524, 1.0000, 0.1220],
# [-0.0132, 0.1220, 1.0000]])
Evaluation
Metrics
Triplet
- Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9601 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 704,308 training samples
- Columns:
anchor,positive, anditemCategory - Approximate statistics based on the first 1000 samples:
anchor positive itemCategory type string string string details - min: 3 tokens
- mean: 8.06 tokens
- max: 41 tokens
- min: 3 tokens
- mean: 5.35 tokens
- max: 97 tokens
- min: 3 tokens
- mean: 3.93 tokens
- max: 9 tokens
- Samples:
anchor positive itemCategory rilastil sunlaude comfort dye fluid spf50 50 mlspf50 sunscreensunscreenlemon and powder leather slippersgenuine cow leatherslippererastapex trioerastapex trio olmesartan medoxomilblood disorder medicine - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Evaluation Dataset
Unnamed Dataset
- Size: 9,509 evaluation samples
- Columns:
anchor,positive,negative, anditemCategory - Approximate statistics based on the first 1000 samples:
anchor positive negative itemCategory type string string string string details - min: 3 tokens
- mean: 9.63 tokens
- max: 43 tokens
- min: 3 tokens
- mean: 6.17 tokens
- max: 150 tokens
- min: 3 tokens
- mean: 9.79 tokens
- max: 41 tokens
- min: 3 tokens
- mean: 3.88 tokens
- max: 10 tokens
- Samples:
anchor positive negative itemCategory pilot mechanical pencil progrex h-127 - 0.7 mm0.7 mm penciltracing sketch a3 70 gr 50 sheetspencilsuperior drawing marker -pen - set of 12 colors - 2 nibmarker pen setwunder chocolate strawberry ganache & coulismarkerfirst person singular author: haruki murakamiharuki murakami bookdark hot chocolate sugar freeliterature and fiction - Loss:
MultipleNegativesSymmetricRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128weight_decay: 0.001num_train_epochs: 5warmup_ratio: 0.2fp16: Truedataloader_num_workers: 1dataloader_prefetch_factor: 2dataloader_persistent_workers: Truepush_to_hub: Truehub_model_id: LamaDiab/NewMiniLM-V15Data-128BATCH-SemanticEnginehub_strategy: all_checkpoints
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.001adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.2warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 1dataloader_prefetch_factor: 2past_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Trueskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: LamaDiab/NewMiniLM-V15Data-128BATCH-SemanticEnginehub_strategy: all_checkpointshub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | Validation Loss | cosine_accuracy |
|---|---|---|---|---|
| 0.0002 | 1 | 3.1229 | - | - |
| 0.1817 | 1000 | 2.6857 | 1.6310 | 0.9441 |
| 0.3634 | 2000 | 2.0541 | 1.5448 | 0.9472 |
| 0.5452 | 3000 | 1.7335 | 1.5236 | 0.9485 |
| 0.7269 | 4000 | 1.2495 | 1.5552 | 0.9433 |
| 0.9086 | 5000 | 0.813 | 1.5794 | 0.9472 |
| 1.0903 | 6000 | 1.0512 | 1.4544 | 0.9567 |
| 1.2720 | 7000 | 1.2912 | 1.4492 | 0.9563 |
| 1.4538 | 8000 | 1.1994 | 1.4519 | 0.9568 |
| 1.6355 | 9000 | 1.0662 | 1.4635 | 0.9545 |
| 1.8172 | 10000 | 0.6724 | 1.5717 | 0.9454 |
| 1.9989 | 11000 | 0.4761 | 1.5509 | 0.9503 |
| 2.1806 | 12000 | 1.0468 | 1.4510 | 0.9591 |
| 2.3623 | 13000 | 0.9871 | 1.4625 | 0.9608 |
| 2.5441 | 14000 | 0.9596 | 1.4531 | 0.9606 |
| 2.7258 | 15000 | 0.7272 | 1.4685 | 0.9589 |
| 2.9075 | 16000 | 0.4716 | 1.5063 | 0.9549 |
| 3.0892 | 17000 | 0.6495 | 1.4401 | 0.9626 |
| 3.2709 | 18000 | 0.8911 | 1.4418 | 0.9642 |
| 3.4527 | 19000 | 0.871 | 1.4658 | 0.9635 |
| 3.6344 | 20000 | 0.8008 | 1.4879 | 0.9594 |
| 3.8161 | 21000 | 0.5084 | 1.4949 | 0.9579 |
| 3.9978 | 22000 | 0.3552 | 1.5567 | 0.9568 |
| 4.1795 | 23000 | 0.8254 | 1.4609 | 0.9651 |
| 4.3613 | 24000 | 0.8164 | 1.4704 | 0.9641 |
| 4.5430 | 25000 | 0.8078 | 1.4598 | 0.9635 |
| 4.7247 | 26000 | 0.6181 | 1.4891 | 0.9602 |
| 4.9064 | 27000 | 0.3932 | 1.4990 | 0.9601 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.9.0
- Datasets: 4.4.1
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 48
Model tree for LamaDiab/NewMiniLM-V15Data-128BATCH-SemanticEngine
Base model
sentence-transformers/all-MiniLM-L6-v2