SentenceTransformer based on Snowflake/snowflake-arctic-embed-s
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-s. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Snowflake/snowflake-arctic-embed-s
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("LucaZilli/model-snowflake-s_20250226_145351_finalmodel")
# Run inference
sentences = [
'materiali isolanti per sistemi radianti a soffitto',
'materiali isolanti per edifici',
'privacy and data protection training',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Datasets:
custom_datasetandstsbenchmark - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | custom_dataset | stsbenchmark |
|---|---|---|
| pearson_cosine | 0.7037 | 0.7477 |
| spearman_cosine | 0.7287 | 0.7432 |
Triplet
- Dataset:
all_nli_dataset - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.8163 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,310 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 4 tokens
- mean: 13.32 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.06 tokens
- max: 31 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score ottimizzazione dei tempi di produzione per capi sartoriali di lussostrumenti per l'ottimizzazione dei tempi di produzione0.6software di programmazione robotica per lucidaturasoftware gestionale generico0.4rete di sensori per l'analisi del suolo in tempo realesoftware per gestione aziendale0.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,164 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 13.61 tokens
- max: 31 tokens
- min: 4 tokens
- mean: 11.39 tokens
- max: 27 tokens
- min: 0.0
- mean: 0.49
- max: 1.0
- Samples:
sentence1 sentence2 score ispezioni regolari per camion aziendaliispezioni regolari per camion di consegna1.0blister packaging machines GMP compliantfood packaging machines0.4EMI shielding paints for electronicsVernici per schermatura elettromagnetica dispositivi elettronici0.8 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 5warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | custom_dataset_spearman_cosine | all_nli_dataset_cosine_accuracy | stsbenchmark_spearman_cosine |
|---|---|---|---|---|---|---|
| -1 | -1 | - | - | 0.7287 | 0.8163 | 0.7432 |
| 0.1264 | 200 | 0.0671 | 0.0434 | - | - | - |
| 0.2528 | 400 | 0.0401 | 0.0344 | - | - | - |
| 0.3793 | 600 | 0.0342 | 0.0307 | - | - | - |
| 0.5057 | 800 | 0.0347 | 0.0327 | - | - | - |
| 0.6321 | 1000 | 0.0322 | 0.0287 | - | - | - |
| 0.7585 | 1200 | 0.032 | 0.0279 | - | - | - |
| 0.8850 | 1400 | 0.0307 | 0.0282 | - | - | - |
| 1.0114 | 1600 | 0.0267 | 0.0279 | - | - | - |
| 1.1378 | 1800 | 0.0244 | 0.0266 | - | - | - |
| 1.2642 | 2000 | 0.0227 | 0.0282 | - | - | - |
| 1.3906 | 2200 | 0.0237 | 0.0249 | - | - | - |
| 1.5171 | 2400 | 0.0222 | 0.0273 | - | - | - |
| 1.6435 | 2600 | 0.0235 | 0.0246 | - | - | - |
| 1.7699 | 2800 | 0.0228 | 0.0247 | - | - | - |
| 1.8963 | 3000 | 0.0225 | 0.0241 | - | - | - |
| 2.0228 | 3200 | 0.0213 | 0.0244 | - | - | - |
| 2.1492 | 3400 | 0.0169 | 0.0234 | - | - | - |
| 2.2756 | 3600 | 0.0178 | 0.0257 | - | - | - |
| 2.4020 | 3800 | 0.018 | 0.0236 | - | - | - |
| 2.5284 | 4000 | 0.0177 | 0.0230 | - | - | - |
| 2.6549 | 4200 | 0.0176 | 0.0234 | - | - | - |
| 2.7813 | 4400 | 0.0182 | 0.0229 | - | - | - |
| 2.9077 | 4600 | 0.0173 | 0.0221 | - | - | - |
| 3.0341 | 4800 | 0.0157 | 0.0232 | - | - | - |
| 3.1606 | 5000 | 0.0139 | 0.0225 | - | - | - |
| 3.2870 | 5200 | 0.0137 | 0.0222 | - | - | - |
| 3.4134 | 5400 | 0.0142 | 0.0224 | - | - | - |
| 3.5398 | 5600 | 0.0143 | 0.0224 | - | - | - |
| 3.6662 | 5800 | 0.0135 | 0.0225 | - | - | - |
| 3.7927 | 6000 | 0.0143 | 0.0223 | - | - | - |
| 3.9191 | 6200 | 0.0143 | 0.0234 | - | - | - |
| 4.0455 | 6400 | 0.0128 | 0.0219 | - | - | - |
| 4.1719 | 6600 | 0.0117 | 0.0222 | - | - | - |
| 4.2984 | 6800 | 0.0113 | 0.0217 | - | - | - |
| 4.4248 | 7000 | 0.0115 | 0.0220 | - | - | - |
| 4.5512 | 7200 | 0.012 | 0.0217 | - | - | - |
| 4.6776 | 7400 | 0.0113 | 0.0221 | - | - | - |
| 4.8040 | 7600 | 0.012 | 0.0217 | - | - | - |
| 4.9305 | 7800 | 0.0105 | 0.0217 | - | - | - |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 8
Model tree for LucaZilli/model-snowflake-s_20250226_145351_finalmodel
Base model
Snowflake/snowflake-arctic-embed-sEvaluation results
- Pearson Cosine on custom datasetself-reported0.704
- Spearman Cosine on custom datasetself-reported0.729
- Cosine Accuracy on all nli datasetself-reported0.816
- Pearson Cosine on stsbenchmarkself-reported0.748
- Spearman Cosine on stsbenchmarkself-reported0.743