MedVLSynther-7B-RL_5K_internvl-glm
Code: https://github.com/UCSC-VLAA/MedVLSynther Project Page: https://ucsc-vlaa.github.io/MedVLSynther/
Model Description
MedVLSynther-7B-RL_5K_internvl-glm is a 7B parameter medical vision-language model based on Qwen2.5-VL. This model has been trained using reinforcement learning on MedSynVQA-5K-internvl-glm dataset.
Model Details
- Base Model: Qwen/Qwen2.5-VL-7B-Instruct
- Model Size: 7B parameters
- Training Method: Reinforcement Learning
- Training Data: MedSynVQA-5K-internvl-glm dataset
Usage
Check here for demo images: https://github.com/UCSC-VLAA/MedVLSynther?tab=readme-ov-file#-quick-start
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
# Load the model
model_name="MedVLSynther/MedVLSynther-7B-RL_5K_internvl-glm"
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
processor = AutoProcessor.from_pretrained(model_name)
# Example usage
messages_1 = [
{
"role": "system",
"content": "You will solve a problem/request. You should provide your thoughts within <think> </think> tags before providing the answer.\nWrite your final answer within <answer> </answer> tags.",
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "assets/7bMMMU.png",
},
{"type": "text", "text": "This line of of myelinated axons in layer IV of visual cortex represents the axons of cells in the Choices: (A) Superior colliculus. (B) Lateral geniculate.(C) Retina. (D) Medial geniculate."},
],
}
]
messages_2 = [
{
"role": "system",
"content": "You will solve a problem/request. You should provide your thoughts within <think> </think> tags before providing the answer.\nWrite your final answer within <answer> </answer> tags.",
},
{
"role": "user",
"content": [
{
"type": "image",
"image": "assets/7bslake.png",
},
{"type": "text", "text": "Does the picture contain kidney? Choices: (A) Yes (B) No"},
],
}
]
# Preparation for inference
messages = messages_2
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Inference
generated_ids = model.generate(**inputs, max_new_tokens=2048, temperature=0.6, top_p=0.95, do_sample=True)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)
Citation
@article{MedVLSynther,
title={MedVLSynther: Synthesizing High-Quality Visual Question Answering from Medical Documents with Generator-Verifier LMMs},
author={Huang, Xiaoke and Wang, Ningsen and Liu, Hui and Tang, Xianfeng and Zhou, Yuyin},
journal={arXiv preprint arXiv:2510.25867},
year={2025}
}
@article{MedVLThinker,
title={Medvlthinker: Simple baselines for multimodal medical reasoning},
author={Huang, Xiaoke and Wu, Juncheng and Liu, Hui and Tang, Xianfeng and Zhou, Yuyin},
journal={arXiv preprint arXiv:2508.02669},
year={2025}
}
License
This model is released under the Apache 2.0 license.
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for MedVLSynther/MedVLSynther-7B-RL_5K_internvl-glm
Base model
Qwen/Qwen2.5-VL-7B-Instruct