ConvNext_Multi ๋ชจ๋ธ ์นด๋“œ

_Last updated: 2025-09-25 08:56:58

์ตœ์‹  ์—…๋ฐ์ดํŠธ ๋‚ด์—ญ

  • ํ•ต์‹ฌ ์ˆ˜์ •์‚ฌํ•ญ: ๋งˆ๋Š˜ ๋ฐ์ดํ„ฐ์…‹ ๊ธฐ๋ฐ˜ ์‚ฌ์ „ ํ•™์Šต ๋ชจ๋ธ์— ๋Œ€ํ•ด ์–‘ํŒŒ ์ƒ์œก ๋‹จ๊ณ„๋ณ„ ์ŠคํŽ™ํŠธ๋Ÿผ ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•œ ์ „์ฒ˜๋ฆฌ ํŒŒ์ดํ”„๋ผ์ธ ๋ฐ ํ•˜์ดํผํŒŒ๋ผ๋ฏธํ„ฐ ์ตœ์ ํ™”(ํ•™์Šต๋ฅ ยท๋ฐฐ์น˜ ํฌ๊ธฐยท์Šค์ผ€์ค„๋Ÿฌ ๋“ฑ)๋ฅผ ์ ์šฉ

  • ๊ฐœ์„ ์‚ฌํ•ญ: ์–‘ํŒŒ ์ƒ์œก ์ƒํƒœ ๋ถ„๋ฅ˜ ์ •ํ™•๋„ ๋ฐ ์ผ๋ฐ˜ํ™” ์„ฑ๋Šฅ ํ–ฅ์ƒ์„ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ์ž‘๋ฌผ๋ณ„ ๋ถ„๊ด‘ ๋ฐ˜์‘ ํŠน์„ฑ์„ ์ฐจ๋ณ„์ ์œผ๋กœ ๋ฐ˜์˜

  • ์ถ”๊ฐ€ ํ•™์Šต: ์–‘ํŒŒ ์ „์šฉ ๋ฉ€ํ‹ฐ์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ์ดํ„ฐ์…‹(Blue, Green, Red, NIR, RedEdge)์„ ํ™œ์šฉํ•œ ์žฌํ•™์Šต ๊ณผ์ •์„ ์ˆ˜ํ–‰ํ•˜์—ฌ, ๋“œ๋ก ยท์œ„์„ฑ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ž‘๋ฌผ ๋ชจ๋‹ˆํ„ฐ๋ง์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ ํ™•๋Œ€

  • ๋„๋ฉ”์ธ ํ™•์žฅ: ๊ธฐ์กด ๋งˆ๋Š˜ ์ค‘์‹ฌ์˜ ๋ชจ๋ธ์„ ์–‘ํŒŒ ์ž‘๋ฌผ ์ƒ์œก ๋ถ„์„๊นŒ์ง€ ํ™•์žฅํ•จ์œผ๋กœ์จ, ๋‹ค์ค‘ ์ž‘๋ฌผ ๋Œ€์ƒ ์ •๋ฐ€ ๋†์—…(Precision Agriculture) ํ™œ์šฉ์„ฑ ๊ฐ•ํ™”

Model Details

ConvNext_Multi๋Š” ๋‹ค์ค‘๋ถ„๊ด‘(๋ฉ€ํ‹ฐ์ŠคํŽ™ํŠธ๋Ÿผ) ์˜์ƒ ๋ฐ์ดํ„ฐ๋ฅผ ์ž…๋ ฅ์œผ๋กœ ํ•˜์—ฌ ์ž‘๋ฌผ ๋ฐ ์‹์ƒ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ConvNeXt ๊ธฐ๋ฐ˜ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค. ๋“œ๋ก  ๋ฐ ์œ„์„ฑ์—์„œ ์ดฌ์˜ํ•œ 5๋ฐด๋“œ (Blue, Green, Red, Near-Infrared, RedEdge) ์˜์ƒ์„ ํšจ์œจ์ ์œผ๋กœ ์ฒ˜๋ฆฌํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด, ๊ณ ํ•ด์ƒ๋„ ๋†์—…ยทํ™˜๊ฒฝ ๋ชจ๋‹ˆํ„ฐ๋ง์— ์ ํ•ฉํ•ฉ๋‹ˆ๋‹ค.

  • Developed by: AI Research Team, MuhanRnd
  • License: MIT
  • Base model: facebook/convnext-tiny-224
  • Languages: Korean (๋ชจ๋ธ ์ฃผ์„ ๋ฐ ๋ฌธ์„œํ™”)
  • Model type: ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ (๋ฉ€ํ‹ฐ๋ฐด๋“œ ์ž…๋ ฅ)
  • Created_date: 2025-06-05 13:32:18
  • Updated_date: 2025-09-25 08:56:58

Uses

Direct Use

  • ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ ๊ธฐ๋ฐ˜ ์ƒ์œก ์ƒํƒœ ๋ถ„๋ฅ˜
  • ๋“œ๋ก  ์˜์ƒ์˜ 5๋ฐด๋“œ ์ž…๋ ฅ ๋ฉ€ํ‹ฐ์ŠคํŽ™ํŠธ๋Ÿผ ์ด๋ฏธ์ง€ ๋ถ„๋ฅ˜ ์ž‘์—…

Downstream Use

  • ์œ ์‚ฌํ•œ ๋‹ค์ค‘๋ถ„๊ด‘ ๋ฐ์ดํ„ฐ์…‹์— ๋Œ€ํ•œ ํŒŒ์ธํŠœ๋‹
  • ๋†์—… ์™ธ ๊ธฐํƒ€ ํ™˜๊ฒฝ ๋ชจ๋‹ˆํ„ฐ๋ง ๋Œ€์ƒ ๋ถ„๋ฅ˜ ๋ฌธ์ œ ์ ์šฉ ๊ฐ€๋Šฅ

Out-of-Scope Use

  • RGB 3๋ฐด๋“œ ์˜์ƒ๋งŒ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒฝ์šฐ (์ž…๋ ฅ ๊ตฌ์กฐ์ƒ ํ™œ์šฉ ๋ถˆ๊ฐ€)
  • ๋ณด์ •๋˜์ง€ ์•Š์€ ๋ฉ€ํ‹ฐ๋ฐด๋“œ ์ด๋ฏธ์ง€(๋‹ค์ค‘๋ถ„๊ด‘ ๋ณด์ •๊ฐ’ ์ฒ˜๋ฆฌ ํ•„์š”)
  • ๊ฐ์ฒด ๊ฒ€์ถœ, ๋ถ„ํ•  ๋“ฑ ๋ถ„๋ฅ˜ ์ด์™ธ์˜ ํƒœ์Šคํฌ

Bias, Risks, and Limitations

  • ๋ณธ ๋ชจ๋ธ์€ ํŠน์ • ์ง€์—ญ ๋ฐ ์ž‘๋ฌผ ๋ฐ์ดํ„ฐ๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ํ•™์Šต๋˜์—ˆ์œผ๋ฏ€๋กœ, ๋ฏธํ•™์Šต ํ™˜๊ฒฝ์—์„œ๋Š” ์„ฑ๋Šฅ ์ €ํ•˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Œ
  • ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ์˜ ํ’ˆ์งˆ, ์ดฌ์˜ ์กฐ๊ฑด, ์ „์ฒ˜๋ฆฌ ๊ณผ์ •์— ๋ฏผ๊ฐํ•จ
  • ๋ฐ์ดํ„ฐ ํŽธํ–ฅ์œผ๋กœ ์ธํ•ด ํŠน์ • ์ž‘๋ฌผ์ด๋‚˜ ๋ฐฐ๊ฒฝ์— ๊ณผ์ ํ•ฉ ๊ฐ€๋Šฅ์„ฑ ์กด์žฌ
  • ๋ชจ๋ธ ์˜ˆ์ธก์€ ๋ณด์กฐ์  ํŒ๋‹จ ์ž๋ฃŒ๋กœ ํ™œ์šฉํ•ด์•ผ ํ•˜๋ฉฐ, ์ตœ์ข… ์˜์‚ฌ๊ฒฐ์ •์€ ์ „๋ฌธ๊ฐ€ ํŒ๋‹จ๊ณผ ๋ณ‘ํ–‰ ํ•„์š”

How to Get Started

from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch

# ๋ชจ๋ธ๊ณผ ํŠน์ง• ์ถ”์ถœ๊ธฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
model = AutoModelForImageClassification.from_pretrained("MhRnd/ConvNext_Multi")
extractor = AutoFeatureExtractor.from_pretrained("MhRnd/ConvNext_Multi")

# ๋‹ค์ค‘๋ฐด๋“œ ์ด๋ฏธ์ง€ ํ…์„œ (์˜ˆ: [batch_size, 5, H, W])
inputs = extractor(multi_band_images, return_tensors="pt")

# ๋ชจ๋ธ ์ถ”๋ก 
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1)

Training Details

  • Training Data:

    • ๋“œ๋ก  ๋ฐ ์œ„์„ฑ ์ดฌ์˜ ๋‹ค์ค‘๋ถ„๊ด‘(5๋ฐด๋“œ) ์ด๋ฏธ์ง€ ๋ฐ์ดํ„ฐ์…‹
    • ๋ผ๋ฒจ: ์ฃผ์š” ์ž‘๋ฌผ ๋ฐ ์ƒ์œก ์ƒํƒœ ํด๋ž˜์Šค
  • Training Procedure:

    • ํŒŒ์ธํŠœ๋‹: facebook/convnext-tiny-224 ๊ธฐ๋ฐ˜
    • ์—ํญ์ˆ˜: 300
    • ๋ฐฐ์น˜์‚ฌ์ด์ฆˆ: 16
    • ์˜ตํ‹ฐ๋งˆ์ด์ €: AdamW
    • ํ•™์Šต๋ฅ : 1e-06, Step ์Šค์ผ€์ค„๋Ÿฌ ์‚ฌ์šฉ

Evaluation

  • Testing Data: ๋ณ„๋„ ๋ณด์œ ํ•œ ๊ฒ€์ฆ์šฉ ๋‹ค์ค‘๋ถ„๊ด‘ ์ด๋ฏธ์ง€์…‹
  • Metrics: ์ •ํ™•๋„(Accuracy), ์†์‹ค(Loss)
  • Performance:
    • ๋ฒ ์ŠคํŠธ ์„ฑ๋Šฅ (Epoch 82):
      • ํ›ˆ๋ จ ์†์‹ค: 0.6502
      • ํ›ˆ๋ จ ์ •ํ™•๋„: 0.9537
      • ๊ฒ€์ฆ ์†์‹ค: 0.7511
      • ๊ฒ€์ฆ ์ •ํ™•๋„: 0.9286
    • ๋งˆ์ง€๋ง‰ ์—…๋ฐ์ดํŠธ: 2025-09-25 08:56:58

Environmental Impact

  • Hardware: NVIDIA RTX 3090 GPU (350W)
  • Training Duration: 18.44 minutes
  • Total FLOPs: 16650438.17 GFLOPs

Citation

@article{liu2022convnext,  
  title={ConvNeXt: A ConvNet for the 2020s},  
  author={Liu, Zhuang and Mao, Han and Wu, Chao and Feichtenhofer, Christoph and Darrell, Trevor and Xie, Saining},  
  journal={arXiv preprint arXiv:2201.03545},  
  year={2022}  
}

Glossary

  • ๋‹ค์ค‘๋ถ„๊ด‘ ์˜์ƒ(Multispectral Imagery): ์—ฌ๋Ÿฌ ํŒŒ์žฅ๋Œ€์˜ ๋น›์„ ๋ถ„๋ฆฌํ•˜์—ฌ ์ดฌ์˜ํ•œ ์˜์ƒ์œผ๋กœ, ์ž‘๋ฌผ์˜ ์ƒ์œก ์ƒํƒœ ๋ถ„์„ ๋“ฑ์— ํ™œ์šฉ๋จ
  • ConvNeXt: ํ˜„๋Œ€์ ์ธ ๊ตฌ์กฐ๋ฅผ ๊ฐ–์ถ˜ ์ปจ๋ณผ๋ฃจ์…˜ ์‹ ๊ฒฝ๋ง(CNN)

Model Card Authors

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for MhRnd/ConvNext_Multi

Finetuned
(53)
this model