Text Generation
Transformers
Safetensors
minimax_m2
conversational
custom_code
fp8
MiniMax-M2 / docs /transformers_deploy_guide.md
rogeryoungh's picture
Update docs/transformers_deploy_guide.md
eb390b8 verified
# MiniMax M2 Model Transformers Deployment Guide
[English Version](./transformers_deploy_guide.md) | [Chinese Version](./transformers_deploy_guide_cn.md)
## Applicable Models
This document applies to the following models. You only need to change the model name during deployment.
- [MiniMaxAI/MiniMax-M2](https://huggingface.co/MiniMaxAI/MiniMax-M2)
The deployment process is illustrated below using MiniMax-M2 as an example.
## System Requirements
- OS: Linux
- Python: 3.9 - 3.12
- Transformers: 4.57.1
- GPU:
- compute capability 7.0 or higher
- Memory requirements: 220 GB for weights.
## Deployment with Python
It is recommended to use a virtual environment (such as **venv**, **conda**, or **uv**) to avoid dependency conflicts.
We recommend installing Transformers in a fresh Python environment:
```bash
uv pip install transformers torch accelerate --torch-backend=auto
```
Run the following Python script to run the model. Transformers will automatically download and cache the MiniMax-M2 model from Hugging Face.
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import torch
MODEL_PATH = "MiniMaxAI/MiniMax-M2"
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map="auto",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
messages = [
{"role": "user", "content": [{"type": "text", "text": "What is your favourite condiment?"}]},
{"role": "assistant", "content": [{"type": "text", "text": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"}]},
{"role": "user", "content": [{"type": "text", "text": "Do you have mayonnaise recipes?"}]}
]
model_inputs = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to("cuda")
generated_ids = model.generate(model_inputs, max_new_tokens=100, generation_config=model.generation_config)
response = tokenizer.batch_decode(generated_ids)[0]
print(response)
```
## Common Issues
### Hugging Face Network Issues
If you encounter network issues, you can set up a proxy before pulling the model.
```bash
export HF_ENDPOINT=https://hf-mirror.com
```
### MiniMax-M2 model is not currently supported
Please check that trust_remote_code=True.
## Getting Support
If you encounter any issues while deploying the MiniMax model:
- Contact our technical support team through official channels such as email at [[email protected]](mailto:[email protected])
- Submit an issue on our [GitHub](https://github.com/MiniMax-AI) repository
We continuously optimize the deployment experience for our models. Feedback is welcome!