emotion_roberta_weighted
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2605
- Accuracy: 0.924
- F1: 0.9254
- Precision: 0.9287
- Recall: 0.924
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.2977 | 1.0 | 1000 | 0.2396 | 0.917 | 0.9182 | 0.9236 | 0.917 |
| 0.1983 | 2.0 | 2000 | 0.2199 | 0.93 | 0.9309 | 0.9338 | 0.93 |
| 0.1787 | 3.0 | 3000 | 0.1968 | 0.9325 | 0.9334 | 0.9363 | 0.9325 |
| 0.1374 | 4.0 | 4000 | 0.1888 | 0.937 | 0.9377 | 0.9407 | 0.937 |
| 0.1188 | 5.0 | 5000 | 0.2357 | 0.939 | 0.9397 | 0.9416 | 0.939 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 2
Model tree for MojtabaHadei/emotion_roberta_weighted
Base model
FacebookAI/roberta-base