SentenceTransformer based on keepitreal/vietnamese-sbert
This is a sentence-transformers model finetuned from keepitreal/vietnamese-sbert on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: keepitreal/vietnamese-sbert
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("NghiBuine/ecommerce-product-search-model")
sentences = [
'LEGO City Police Station',
'mô hình đẹp mắt để trưng bày',
'dễ dàng phối đồ từ áo thun, sơ mi đến blazer',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0 |
| cosine_accuracy@3 |
0.0 |
| cosine_accuracy@5 |
0.027 |
| cosine_accuracy@10 |
0.5676 |
| cosine_precision@1 |
0.0 |
| cosine_precision@3 |
0.0 |
| cosine_precision@5 |
0.0054 |
| cosine_precision@10 |
0.0568 |
| cosine_recall@1 |
0.0 |
| cosine_recall@3 |
0.0 |
| cosine_recall@5 |
0.027 |
| cosine_recall@10 |
0.5676 |
| cosine_ndcg@10 |
0.1784 |
| cosine_mrr@10 |
0.0706 |
| cosine_map@100 |
0.0797 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0 |
| cosine_accuracy@3 |
0.0 |
| cosine_accuracy@5 |
0.0 |
| cosine_accuracy@10 |
0.5405 |
| cosine_precision@1 |
0.0 |
| cosine_precision@3 |
0.0 |
| cosine_precision@5 |
0.0 |
| cosine_precision@10 |
0.0541 |
| cosine_recall@1 |
0.0 |
| cosine_recall@3 |
0.0 |
| cosine_recall@5 |
0.0 |
| cosine_recall@10 |
0.5405 |
| cosine_ndcg@10 |
0.1702 |
| cosine_mrr@10 |
0.0675 |
| cosine_map@100 |
0.0782 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0 |
| cosine_accuracy@3 |
0.0 |
| cosine_accuracy@5 |
0.0 |
| cosine_accuracy@10 |
0.5405 |
| cosine_precision@1 |
0.0 |
| cosine_precision@3 |
0.0 |
| cosine_precision@5 |
0.0 |
| cosine_precision@10 |
0.0541 |
| cosine_recall@1 |
0.0 |
| cosine_recall@3 |
0.0 |
| cosine_recall@5 |
0.0 |
| cosine_recall@10 |
0.5405 |
| cosine_ndcg@10 |
0.1722 |
| cosine_mrr@10 |
0.0695 |
| cosine_map@100 |
0.0794 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0 |
| cosine_accuracy@3 |
0.0 |
| cosine_accuracy@5 |
0.0 |
| cosine_accuracy@10 |
0.5405 |
| cosine_precision@1 |
0.0 |
| cosine_precision@3 |
0.0 |
| cosine_precision@5 |
0.0 |
| cosine_precision@10 |
0.0541 |
| cosine_recall@1 |
0.0 |
| cosine_recall@3 |
0.0 |
| cosine_recall@5 |
0.0 |
| cosine_recall@10 |
0.5405 |
| cosine_ndcg@10 |
0.1706 |
| cosine_mrr@10 |
0.0679 |
| cosine_map@100 |
0.0761 |
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.0 |
| cosine_accuracy@3 |
0.0 |
| cosine_accuracy@5 |
0.027 |
| cosine_accuracy@10 |
0.5135 |
| cosine_precision@1 |
0.0 |
| cosine_precision@3 |
0.0 |
| cosine_precision@5 |
0.0054 |
| cosine_precision@10 |
0.0514 |
| cosine_recall@1 |
0.0 |
| cosine_recall@3 |
0.0 |
| cosine_recall@5 |
0.027 |
| cosine_recall@10 |
0.5135 |
| cosine_ndcg@10 |
0.1648 |
| cosine_mrr@10 |
0.0673 |
| cosine_map@100 |
0.0779 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 333 training samples
- Columns:
positive and anchor
- Approximate statistics based on the first 333 samples:
|
positive |
anchor |
| type |
string |
string |
| details |
- min: 4 tokens
- mean: 9.73 tokens
- max: 37 tokens
|
- min: 6 tokens
- mean: 13.71 tokens
- max: 41 tokens
|
- Samples:
| positive |
anchor |
Giày Chạy Bộ Adidas Ultraboost |
Ultraboost đế continental chống trượt |
Cà Phê Cùng Tony |
Cà Phê Cùng Tony chia sẻ bài học phát triển bản thân và sống tích cực |
Đắc Nhân Tâm |
phát triển kỹ năng thuyết phục và giao tiếp tự nhiên |
- Loss:
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epoch
per_device_train_batch_size: 32
gradient_accumulation_steps: 16
learning_rate: 2e-05
num_train_epochs: 4
bf16: True
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: epoch
prediction_loss_only: True
per_device_train_batch_size: 32
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 16
eval_accumulation_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 4
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
dim_768_cosine_ndcg@10 |
dim_512_cosine_ndcg@10 |
dim_256_cosine_ndcg@10 |
dim_128_cosine_ndcg@10 |
dim_64_cosine_ndcg@10 |
| 1.0 |
1 |
0.1716 |
0.1897 |
0.1450 |
0.1699 |
0.1542 |
| 2.0 |
3 |
0.179 |
0.171 |
0.1722 |
0.1719 |
0.1644 |
| 2.9091 |
4 |
0.1784 |
0.1702 |
0.1722 |
0.1706 |
0.1648 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 4.1.0
- Transformers: 4.41.2
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}