Update Quantization Method to BitsAndBytesConfig method for newer transformers version (locally, 4.53.1)
#2
by
SidTheChillGuy
- opened
README.md
CHANGED
|
@@ -195,14 +195,15 @@ model = AutoModel.from_pretrained(
|
|
| 195 |
|
| 196 |
```python
|
| 197 |
import torch
|
| 198 |
-
from transformers import AutoTokenizer, AutoModel
|
| 199 |
path = "OpenGVLab/InternVL3-2B"
|
|
|
|
| 200 |
model = AutoModel.from_pretrained(
|
| 201 |
path,
|
| 202 |
torch_dtype=torch.bfloat16,
|
| 203 |
-
load_in_8bit=True,
|
| 204 |
low_cpu_mem_usage=True,
|
| 205 |
use_flash_attn=True,
|
|
|
|
| 206 |
trust_remote_code=True).eval()
|
| 207 |
```
|
| 208 |
|
|
@@ -262,7 +263,7 @@ import torchvision.transforms as T
|
|
| 262 |
from decord import VideoReader, cpu
|
| 263 |
from PIL import Image
|
| 264 |
from torchvision.transforms.functional import InterpolationMode
|
| 265 |
-
from transformers import AutoModel, AutoTokenizer
|
| 266 |
|
| 267 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 268 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
|
@@ -368,10 +369,11 @@ def split_model(model_name):
|
|
| 368 |
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
|
| 369 |
path = 'OpenGVLab/InternVL3-2B'
|
| 370 |
device_map = split_model('InternVL3-2B')
|
|
|
|
| 371 |
model = AutoModel.from_pretrained(
|
| 372 |
path,
|
| 373 |
torch_dtype=torch.bfloat16,
|
| 374 |
-
|
| 375 |
low_cpu_mem_usage=True,
|
| 376 |
use_flash_attn=True,
|
| 377 |
trust_remote_code=True,
|
|
|
|
| 195 |
|
| 196 |
```python
|
| 197 |
import torch
|
| 198 |
+
from transformers import AutoTokenizer, AutoModel, BitsAndBytesConfig
|
| 199 |
path = "OpenGVLab/InternVL3-2B"
|
| 200 |
+
quant_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 201 |
model = AutoModel.from_pretrained(
|
| 202 |
path,
|
| 203 |
torch_dtype=torch.bfloat16,
|
|
|
|
| 204 |
low_cpu_mem_usage=True,
|
| 205 |
use_flash_attn=True,
|
| 206 |
+
quantization_config = quant_config,
|
| 207 |
trust_remote_code=True).eval()
|
| 208 |
```
|
| 209 |
|
|
|
|
| 263 |
from decord import VideoReader, cpu
|
| 264 |
from PIL import Image
|
| 265 |
from torchvision.transforms.functional import InterpolationMode
|
| 266 |
+
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig
|
| 267 |
|
| 268 |
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
| 269 |
IMAGENET_STD = (0.229, 0.224, 0.225)
|
|
|
|
| 369 |
# If you set `load_in_8bit=False`, you will need at least three 80GB GPUs.
|
| 370 |
path = 'OpenGVLab/InternVL3-2B'
|
| 371 |
device_map = split_model('InternVL3-2B')
|
| 372 |
+
quant_config = BitsAndBytesConfig(load_in_8bit=False)
|
| 373 |
model = AutoModel.from_pretrained(
|
| 374 |
path,
|
| 375 |
torch_dtype=torch.bfloat16,
|
| 376 |
+
quantization_config = quant_config,
|
| 377 |
low_cpu_mem_usage=True,
|
| 378 |
use_flash_attn=True,
|
| 379 |
trust_remote_code=True,
|