Docking@HOME
Distributed and Parallel Molecular Docking Platform
Overview
Docking@HOME is a cutting-edge distributed computing platform that leverages the power of volunteer computing, GPU acceleration, decentralized networking, and AI-driven orchestration to perform large-scale molecular docking simulations. This project combines multiple state-of-the-art technologies to democratize drug discovery and computational chemistry.
Key Features
- 𧬠AutoDock Integration: Uses AutoDock Suite 4.2.6 for molecular docking simulations
- π GPU Acceleration: CUDPP-powered parallel processing for enhanced performance
- π Distributed Computing: BOINC framework for volunteer computing at scale
- π Decentralized Networking: Distributed Network Settings-based coordination using the Decentralized Internet SDK
- π€ AI Orchestration: Cloud Agents for intelligent task distribution and optimization
- π HuggingFace Integration: Model cards and datasets for reproducible research
Architecture
Docking@HOME Platform
βββββββββββββββββββββββ
β BOINC Server β
β (Task Mgmt) β
βββββββββββ²ββββββββββββ
β
β
ββββββββββββ΄ββββββββββββ
β Decentralized β
β Internet β
βββββββββββ²ββββββββββββ
β
β
ββββββββββββ΄ββββββββββββ
β Cloud Agents β
β (AI Routing) β
ββββββββββββ¬ββββββββββββ
β
βΌ
ββββββββββββββββββββββββββββββββββββββββββββββββ
β Distributed Worker Nodes (Clients) β
β ββββββββββββββββββ ββββββββββββββββββ β
β β AutoDock β<---->β CUDPP β β
β β (Docking) β β (GPU Accel) β β
β ββββββββββββββββββ ββββββββββββββββββ β
ββββββββββββββββββββββββββββββββββββββββββββββββ
Components
1. AutoDock Suite (v4.2.6)
Core molecular docking engine that predicts binding modes and affinities of small molecules to protein targets.
2. CUDPP (CUDA Data Parallel Primitives Library)
Provides GPU-accelerated parallel primitives for enhancing AutoDock's computational performance.
3. BOINC (Berkeley Open Infrastructure for Network Computing)
Distributed computing middleware that manages volunteer computing resources globally.
4. The Decentralized Internet SDK
Enables Distributed Network Settings-based coordination, ensuring transparency and decentralization of task distribution.
5. Cloud Agents
AI-powered orchestration layer that optimizes task scheduling and resource allocation based on workload characteristics.
Authors & Contributors
- OpenPeer AI - AI/ML Integration & Cloud Agents
- Riemann Computing Inc. - Distributed Computing Architecture
- Bleunomics - Bioinformatics & Drug Discovery Expertise
- Andrew Magdy Kamal - Project Lead & System Integration
Installation
Prerequisites
- C++ compiler (GCC 7+ or MSVC 2019+)
- CUDA Toolkit 11.0+ (for GPU acceleration)
- Python 3.8+
- Node.js 16+ (for the Decentralized Internet SDK)
- BOINC client/server software
Build Instructions
# Clone the repository
git clone https://huggingface.co/OpenPeerAI/DockingAtHOME
cd DockingAtHOME
# Initialize submodules
git submodule update --init --recursive
# Build the project
mkdir build && cd build
cmake ..
make -j$(nproc)
# Install
sudo make install
Getting Started
Installation
# Clone repository
git clone https://huggingface.co/OpenPeerAI/DockingAtHOME
cd DockingAtHOME
# Install dependencies
pip install -r requirements.txt
npm install
# Build C++/CUDA components
mkdir build && cd build
cmake .. && make -j$(nproc)
Quick Start with GUI
# Start the web-based GUI (fastest way to get started)
docking-at-home gui
# Or with Python
python -m docking_at_home.gui
# Open browser to http://localhost:8080
Quick Start Example (CLI)
from docking_at_home import DockingClient
# Initialize client (localhost mode)
client = DockingClient(mode="localhost")
# Submit docking job
job = client.submit_job(
ligand="path/to/ligand.pdbqt",
receptor="path/to/receptor.pdbqt",
num_runs=100
)
# Monitor progress
status = client.get_status(job.id)
# Retrieve results
results = client.get_results(job.id)
print(f"Best binding energy: {results.best_energy} kcal/mol")
Running on Localhost
# Start server
docking-at-home server --port 8080
# In another terminal, run worker
docking-at-home worker --local
Python API
from docking_at_home.server import job_manager, initialize_server
import asyncio
async def main():
await initialize_server()
job_id = await job_manager.submit_job(
ligand_file="molecule.pdbqt",
receptor_file="protein.pdbqt",
num_runs=100,
use_gpu=True
)
# Monitor progress
while True:
job = job_manager.get_job(job_id)
if job["status"] == "completed":
print(f"Best energy: {job['results']['best_energy']}")
break
await asyncio.sleep(1)
asyncio.run(main())
Configuration
Configuration files are located in config/:
autodock.conf- AutoDock parametersboinc_server.conf- BOINC server settingsgpu_config.conf- CUDPP and GPU settingsdecentralized.conf- Distributed Network Settingscloud_agents.conf- AI orchestration parameters
Performance
On a typical configuration:
- CPU-only: ~100 docking runs/hour
- Single GPU (RTX 3090): ~2,000 docking runs/hour
- Distributed (1000 nodes): ~100,000+ docking runs/hour
Use Cases
- π¬ Drug Discovery and Virtual Screening
- π§ͺ Protein-Ligand Binding Studies
- π Large-Scale Chemical Library Screening
- π Educational Computational Chemistry
- π Pandemic Response (e.g., COVID-19 drug discovery)
Contributing
We welcome contributions! Please see CONTRIBUTING.md for guidelines.
License
This project is licensed under the GNU General Public License v3.0 - see LICENSE for details.
Individual components retain their original licenses:
- AutoDock: GNU GPL v2
- BOINC: GNU LGPL v3
- CUDPP: BSD License
Citation
If you use Docking@HOME in your research, please cite:
@software{docking_at_home_2025,
title={Docking@HOME: A Distributed Platform for Molecular Docking},
author={OpenPeer AI and Riemann Computing Inc. and Bleunomics and Andrew Magdy Kamal},
year={2025},
url={https://huggingface.co/OpenPeerAI/DockingAtHOME}
}
Support
- π§ Email: [email protected]
- οΏ½ Issues: HuggingFace Issues
- π€ Community: HuggingFace Discussions
Acknowledgments
- The AutoDock development team at The Scripps Research Institute
- BOINC project at UC Berkeley
- CUDPP developers
- Lonero Team for the Decentralized Internet SDK
- OpenPeer AI for Cloud Agents framework
Made with β€οΈ by the open-source computational chemistry community