legalcase_outcomepred_model_v1

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3580
  • Accuracy: 0.3340

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.4956 0.9981 132 2.0711 0.3174
1.5006 1.9962 264 2.0215 0.2848
1.4925 2.9943 396 2.0069 0.2796
1.429 4.0 529 1.9503 0.2947
1.2188 4.9981 661 2.1001 0.3240
1.0163 5.9962 793 2.1491 0.3297
0.8554 6.9943 925 2.2008 0.3236
0.7692 8.0 1058 2.2889 0.3316
0.7553 8.9981 1190 2.3550 0.3349
0.6845 9.9811 1320 2.3580 0.3340

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
11
Safetensors
Model size
67M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Othniel74/legalcase_outcomepred_model_v1

Finetuned
(10516)
this model

Evaluation results