See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 9ec0afa166640e12_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/9ec0afa166640e12_train_data.json
  type:
    field_input: Human
    field_instruction: Instructions
    field_output: Assistant
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: Paladiso/f1201bb8-ebf3-42b2-b9e4-61a9b9112e1f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/9ec0afa166640e12_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d10685b2-536a-4354-a43c-b3192bbff902
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d10685b2-536a-4354-a43c-b3192bbff902
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
f1201bb8-ebf3-42b2-b9e4-61a9b9112e1f
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8192
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
 - train_batch_size: 2
 - eval_batch_size: 2
 - seed: 42
 - gradient_accumulation_steps: 4
 - total_train_batch_size: 8
 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
 - lr_scheduler_type: cosine
 - lr_scheduler_warmup_steps: 10
 - training_steps: 10
 
Training results
| Training Loss | Epoch | Step | Validation Loss | 
|---|---|---|---|
| 7.4987 | 0.0000 | 1 | 7.0247 | 
| 6.3483 | 0.0000 | 3 | 6.7829 | 
| 4.5338 | 0.0001 | 6 | 3.5306 | 
| 2.0003 | 0.0001 | 9 | 1.8192 | 
Framework versions
- PEFT 0.13.2
 - Transformers 4.46.0
 - Pytorch 2.5.0+cu124
 - Datasets 3.0.1
 - Tokenizers 0.20.1
 
- Downloads last month
 - -
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	๐
			
		Ask for provider support
Model tree for Paladiso/f1201bb8-ebf3-42b2-b9e4-61a9b9112e1f
Base model
google/gemma-2-9b
				Finetuned
	
	
google/gemma-2-9b-it
						
				Finetuned
	
	
princeton-nlp/gemma-2-9b-it-SimPO