|
|
import os |
|
|
from typing import Union |
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.utils import logging |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
class NEOVisionConfig(PretrainedConfig): |
|
|
|
|
|
model_type = 'neo_vision' |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
num_channels=3, |
|
|
patch_size=16, |
|
|
hidden_size=1024, |
|
|
llm_hidden_size=2048, |
|
|
downsample_ratio=0.5, |
|
|
rope_theta_vision=10000.0, |
|
|
max_position_embeddings_vision=10000, |
|
|
min_pixels=65536, |
|
|
max_pixels=4194304, |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
self.hidden_size = hidden_size |
|
|
self.llm_hidden_size = llm_hidden_size, |
|
|
self.downsample_ratio = downsample_ratio, |
|
|
self.rope_theta_vision = rope_theta_vision |
|
|
self.max_position_embeddings_vision = max_position_embeddings_vision |
|
|
self.num_channels = num_channels |
|
|
self.patch_size = patch_size |
|
|
self.min_pixels = min_pixels |
|
|
self.max_pixels = max_pixels |
|
|
|
|
|
@classmethod |
|
|
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': |
|
|
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) |
|
|
|
|
|
if 'vision_config' in config_dict: |
|
|
config_dict = config_dict['vision_config'] |
|
|
|
|
|
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: |
|
|
logger.warning( |
|
|
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " |
|
|
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' |
|
|
) |
|
|
|
|
|
return cls.from_dict(config_dict, **kwargs) |