NEO1_0-2B-SFT / configuration_neo_vit.py
Paranioar's picture
Upload folder using huggingface_hub
d585119 verified
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
class NEOVisionConfig(PretrainedConfig):
model_type = 'neo_vision'
def __init__(
self,
num_channels=3,
patch_size=16,
hidden_size=1024,
llm_hidden_size=2048,
downsample_ratio=0.5,
rope_theta_vision=10000.0,
max_position_embeddings_vision=10000,
min_pixels=65536,
max_pixels=4194304,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.llm_hidden_size = llm_hidden_size,
self.downsample_ratio = downsample_ratio,
self.rope_theta_vision = rope_theta_vision
self.max_position_embeddings_vision = max_position_embeddings_vision
self.num_channels = num_channels
self.patch_size = patch_size
self.min_pixels = min_pixels
self.max_pixels = max_pixels
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig':
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
if 'vision_config' in config_dict:
config_dict = config_dict['vision_config']
if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.'
)
return cls.from_dict(config_dict, **kwargs)