Add library_name and pipeline_tag
#2
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,18 +1,20 @@
|
|
| 1 |
---
|
| 2 |
-
license: llama2
|
| 3 |
datasets:
|
| 4 |
- RUCKBReasoning/TableLLM-SFT
|
| 5 |
language:
|
| 6 |
- en
|
|
|
|
| 7 |
tags:
|
| 8 |
- Table
|
| 9 |
- QA
|
| 10 |
- Code
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
|
| 14 |
|
| 15 |
-
| **[Paper](https://arxiv.org/abs/2403.19318)** | **[Training set](https://huggingface.co/datasets/RUCKBReasoning/TableLLM-SFT)** | **[Github](https://github.com/
|
| 16 |
|
| 17 |
We present **TableLLM**, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: [TableLLM-7B](https://huggingface.co/RUCKBReasoning/TableLLM-7b) and [TableLLM-13B](https://huggingface.co/RUCKBReasoning/TableLLM-13b), which are fine-tuned based on [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) and [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf).
|
| 18 |
|
|
@@ -92,4 +94,146 @@ The prompt template for direct text answer generation on short tables.
|
|
| 92 |
### [Solution][INST/]
|
| 93 |
````
|
| 94 |
|
| 95 |
-
For more details about how to use TableLLM, please refer to our GitHub page: <https://github.com/TableLLM/TableLLM>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
|
|
|
| 2 |
datasets:
|
| 3 |
- RUCKBReasoning/TableLLM-SFT
|
| 4 |
language:
|
| 5 |
- en
|
| 6 |
+
license: llama2
|
| 7 |
tags:
|
| 8 |
- Table
|
| 9 |
- QA
|
| 10 |
- Code
|
| 11 |
+
pipeline_tag: table-question-answering
|
| 12 |
+
library_name: transformers
|
| 13 |
---
|
| 14 |
|
| 15 |
# TableLLM: Enabling Tabular Data Manipulation by LLMs in Real Office Usage Scenarios
|
| 16 |
|
| 17 |
+
| **[Paper](https://arxiv.org/abs/2403.19318)** | **[Training set](https://huggingface.co/datasets/RUCKBReasoning/TableLLM-SFT)** | **[Github](https://github.com/TableLLM/TableLLM)** | **[Homepage](https://tablellm.github.io/)** |
|
| 18 |
|
| 19 |
We present **TableLLM**, a powerful large language model designed to handle tabular data manipulation tasks efficiently, whether they are embedded in spreadsheets or documents, meeting the demands of real office scenarios. The TableLLM series encompasses two distinct scales: [TableLLM-7B](https://huggingface.co/RUCKBReasoning/TableLLM-7b) and [TableLLM-13B](https://huggingface.co/RUCKBReasoning/TableLLM-13b), which are fine-tuned based on [CodeLlama-7b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf) and [CodeLlama-13b-Instruct-hf](https://huggingface.co/codellama/CodeLlama-13b-Instruct-hf).
|
| 20 |
|
|
|
|
| 94 |
### [Solution][INST/]
|
| 95 |
````
|
| 96 |
|
| 97 |
+
For more details about how to use TableLLM, please refer to our GitHub page: <https://github.com/TableLLM/TableLLM>
|
| 98 |
+
|
| 99 |
+
# File information
|
| 100 |
+
|
| 101 |
+
The repository contains the following file information:
|
| 102 |
+
|
| 103 |
+
Filename: special_tokens_map.json
|
| 104 |
+
Content: {
|
| 105 |
+
"bos_token": {
|
| 106 |
+
"content": "<s>",
|
| 107 |
+
"lstrip": false,
|
| 108 |
+
"normalized": true,
|
| 109 |
+
"rstrip": false,
|
| 110 |
+
"single_word": false
|
| 111 |
+
},
|
| 112 |
+
"eos_token": {
|
| 113 |
+
"content": "</s>",
|
| 114 |
+
"lstrip": false,
|
| 115 |
+
"normalized": true,
|
| 116 |
+
"rstrip": false,
|
| 117 |
+
"single_word": false
|
| 118 |
+
},
|
| 119 |
+
"pad_token": "[PAD]",
|
| 120 |
+
"unk_token": {
|
| 121 |
+
"content": "<unk>",
|
| 122 |
+
"lstrip": false,
|
| 123 |
+
"normalized": true,
|
| 124 |
+
"rstrip": false,
|
| 125 |
+
"single_word": false
|
| 126 |
+
}
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
Filename: model.safetensors.index.json
|
| 130 |
+
Content: {
|
| 131 |
+
"metadata": {
|
| 132 |
+
"total_size": 26032056320
|
| 133 |
+
},
|
| 134 |
+
"weight_map": {
|
| 135 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
| 136 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
| 137 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 138 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 139 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 140 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 141 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 142 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 143 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 144 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 145 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 146 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 147 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 148 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 149 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 150 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 151 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 152 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 153 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 154 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 155 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 156 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 157 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 158 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 159 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 160 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 161 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 162 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 163 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 164 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 165 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 166 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 167 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 168 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 169 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 170 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 171 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 172 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 173 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 174 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 175 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 176 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 177 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 178 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 179 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 180 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 181 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 182 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 183 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 184 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 185 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 186 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 187 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 188 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 189 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 190 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 191 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 192 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 193 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 194 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 195 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 196 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 197 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 198 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 199 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 200 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 201 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 202 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 203 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 204 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 205 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 206 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 207 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 208 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 209 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 210 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 211 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 212 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 213 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 214 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 215 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 216 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 217 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 218 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 219 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 220 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 221 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 222 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 223 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 224 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 225 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 226 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 227 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 228 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 229 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 230 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 231 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 232 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 233 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 234 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 235 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 236 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 237 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 238 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 239 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-0
|