|
|
--- |
|
|
language: |
|
|
- en |
|
|
- fr |
|
|
- de |
|
|
- es |
|
|
- it |
|
|
- pt |
|
|
- zh |
|
|
- ja |
|
|
- ru |
|
|
- ko |
|
|
base_model: |
|
|
- mistralai/Mistral-Small-24B-Instruct-2501 |
|
|
pipeline_tag: text-generation |
|
|
tags: |
|
|
- mistral |
|
|
- mistral-small |
|
|
- fp8 |
|
|
- vllm |
|
|
- conversational |
|
|
- text-generation-inference |
|
|
- compressed-tensors |
|
|
license: apache-2.0 |
|
|
license_name: apache-2.0 |
|
|
name: RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic |
|
|
description: FP8-Quantized variant of Mistral-Small-24B-Instruct-2501. |
|
|
readme: https://huggingface.co/RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic/main/README.md |
|
|
tasks: |
|
|
- text-to-text |
|
|
provider: Red Hat |
|
|
license_link: https://www.apache.org/licenses/LICENSE-2.0 |
|
|
validated_on: |
|
|
- RHOAI 2.20 |
|
|
- RHAIIS 3.0 |
|
|
- RHELAI 1.5 |
|
|
--- |
|
|
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;"> |
|
|
Mistral-Small-24B-Instruct-2501-FP8-dynamic |
|
|
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" /> |
|
|
</h1> |
|
|
|
|
|
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;"> |
|
|
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" /> |
|
|
</a> |
|
|
|
|
|
## Model Overview |
|
|
- **Model Architecture:** Mistral-Small-24B-Instruct-2501 |
|
|
- **Input:** Text |
|
|
- **Output:** Text |
|
|
- **Model Optimizations:** |
|
|
- **Weight quantization:** FP8 |
|
|
- **Activation quantization:** FP8 |
|
|
- **Release Date:** 3/1/2025 |
|
|
- **Version:** 1.0 |
|
|
- **Validated on:** RHOAI 2.20, RHAIIS 3.0, RHELAI 1.5 |
|
|
- **Model Developers:** Neural Magic |
|
|
|
|
|
Quantized version of [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501). |
|
|
It achieves an average score of 78.88 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 79.45. |
|
|
|
|
|
### Model Optimizations |
|
|
|
|
|
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM. |
|
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. |
|
|
|
|
|
## Deployment |
|
|
|
|
|
### Use with vLLM |
|
|
|
|
|
1. Initialize vLLM server: |
|
|
``` |
|
|
vllm serve RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic --tensor_parallel_size 1 --tokenizer_mode mistral |
|
|
``` |
|
|
|
|
|
2. Send requests to the server: |
|
|
|
|
|
```python |
|
|
from openai import OpenAI |
|
|
|
|
|
# Modify OpenAI's API key and API base to use vLLM's API server. |
|
|
openai_api_key = "EMPTY" |
|
|
openai_api_base = "http://<your-server-host>:8000/v1" |
|
|
|
|
|
client = OpenAI( |
|
|
api_key=openai_api_key, |
|
|
base_url=openai_api_base, |
|
|
) |
|
|
|
|
|
model = "RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic" |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."}, |
|
|
] |
|
|
|
|
|
outputs = client.chat.completions.create( |
|
|
model=model, |
|
|
messages=messages, |
|
|
) |
|
|
|
|
|
generated_text = outputs.choices[0].message.content |
|
|
print(generated_text) |
|
|
``` |
|
|
|
|
|
<details> |
|
|
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary> |
|
|
|
|
|
```bash |
|
|
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \ |
|
|
--ipc=host \ |
|
|
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \ |
|
|
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \ |
|
|
--name=vllm \ |
|
|
registry.access.redhat.com/rhaiis/rh-vllm-cuda \ |
|
|
vllm serve \ |
|
|
--tensor-parallel-size 8 \ |
|
|
--max-model-len 32768 \ |
|
|
--enforce-eager --model RedHatAI/Mistral-Small-24B-Instruct-2501-FP8-dynamic |
|
|
``` |
|
|
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details. |
|
|
</details> |
|
|
|
|
|
<details> |
|
|
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary> |
|
|
|
|
|
```bash |
|
|
# Download model from Red Hat Registry via docker |
|
|
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified. |
|
|
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-24b-instruct-2501-fp8-dynamic:1.5 |
|
|
``` |
|
|
|
|
|
```bash |
|
|
# Serve model via ilab |
|
|
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-24b-instruct-2501-fp8-dynamic --gpu 1 -- --trust-remote-code |
|
|
|
|
|
# Chat with model |
|
|
ilab model chat --model ~/.cache/instructlab/models/mistral-small-24b-instruct-2501-fp8-dynamic |
|
|
``` |
|
|
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details. |
|
|
</details> |
|
|
|
|
|
<details> |
|
|
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary> |
|
|
|
|
|
```python |
|
|
# Setting up vllm server with ServingRuntime |
|
|
# Save as: vllm-servingruntime.yaml |
|
|
apiVersion: serving.kserve.io/v1alpha1 |
|
|
kind: ServingRuntime |
|
|
metadata: |
|
|
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name |
|
|
annotations: |
|
|
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe |
|
|
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]' |
|
|
labels: |
|
|
opendatahub.io/dashboard: 'true' |
|
|
spec: |
|
|
annotations: |
|
|
prometheus.io/port: '8080' |
|
|
prometheus.io/path: '/metrics' |
|
|
multiModel: false |
|
|
supportedModelFormats: |
|
|
- autoSelect: true |
|
|
name: vLLM |
|
|
containers: |
|
|
- name: kserve-container |
|
|
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm |
|
|
command: |
|
|
- python |
|
|
- -m |
|
|
- vllm.entrypoints.openai.api_server |
|
|
args: |
|
|
- "--port=8080" |
|
|
- "--model=/mnt/models" |
|
|
- "--served-model-name={{.Name}}" |
|
|
env: |
|
|
- name: HF_HOME |
|
|
value: /tmp/hf_home |
|
|
ports: |
|
|
- containerPort: 8080 |
|
|
protocol: TCP |
|
|
``` |
|
|
|
|
|
```python |
|
|
# Attach model to vllm server. This is an NVIDIA template |
|
|
# Save as: inferenceservice.yaml |
|
|
apiVersion: serving.kserve.io/v1beta1 |
|
|
kind: InferenceService |
|
|
metadata: |
|
|
annotations: |
|
|
openshift.io/display-name: mistral-small-24b-instruct-2501-fp8-dynamic # OPTIONAL CHANGE |
|
|
serving.kserve.io/deploymentMode: RawDeployment |
|
|
name: mistral-small-24b-instruct-2501-fp8-dynamic # specify model name. This value will be used to invoke the model in the payload |
|
|
labels: |
|
|
opendatahub.io/dashboard: 'true' |
|
|
spec: |
|
|
predictor: |
|
|
maxReplicas: 1 |
|
|
minReplicas: 1 |
|
|
model: |
|
|
args: |
|
|
- "--tokenizer-mode=mistral" |
|
|
- "--config-format=mistral" |
|
|
- "--load-format=mistral" |
|
|
- "--tool-call-parser=mistral" |
|
|
- "--enable-auto-tool-choice" |
|
|
- "--limit-mm-per-prompt=image=10" |
|
|
- "--max-model-len=16384" |
|
|
- "--uvicorn-log-level=debug" |
|
|
- "--trust-remote-code" |
|
|
modelFormat: |
|
|
name: vLLM |
|
|
name: '' |
|
|
resources: |
|
|
limits: |
|
|
cpu: '2' # this is model specific |
|
|
memory: 8Gi # this is model specific |
|
|
nvidia.com/gpu: '1' # this is accelerator specific |
|
|
requests: # same comment for this block |
|
|
cpu: '1' |
|
|
memory: 4Gi |
|
|
nvidia.com/gpu: '1' |
|
|
runtime: vllm-cuda-runtime # must match the ServingRuntime name above |
|
|
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-24b-instruct-2501-fp8-dynamic:1.5 |
|
|
tolerations: |
|
|
- effect: NoSchedule |
|
|
key: nvidia.com/gpu |
|
|
operator: Exists |
|
|
``` |
|
|
|
|
|
```bash |
|
|
# make sure first to be in the project where you want to deploy the model |
|
|
# oc project <project-name> |
|
|
|
|
|
# apply both resources to run model |
|
|
|
|
|
# Apply the ServingRuntime |
|
|
oc apply -f vllm-servingruntime.yaml |
|
|
|
|
|
# Apply the InferenceService |
|
|
oc apply -f qwen-inferenceservice.yaml |
|
|
``` |
|
|
|
|
|
```python |
|
|
# Replace <inference-service-name> and <cluster-ingress-domain> below: |
|
|
# - Run `oc get inferenceservice` to find your URL if unsure. |
|
|
|
|
|
# Call the server using curl: |
|
|
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions |
|
|
-H "Content-Type: application/json" \ |
|
|
-d '{ |
|
|
"model": "mistral-small-24b-instruct-2501-fp8-dynamic", |
|
|
"stream": true, |
|
|
"stream_options": { |
|
|
"include_usage": true |
|
|
}, |
|
|
"max_tokens": 1, |
|
|
"messages": [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": "How can a bee fly when its wings are so small?" |
|
|
} |
|
|
] |
|
|
}' |
|
|
|
|
|
``` |
|
|
|
|
|
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details. |
|
|
</details> |
|
|
|
|
|
|
|
|
## Creation |
|
|
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
|
|
|
```python |
|
|
import argparse |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
|
from llmcompressor.transformers import oneshot |
|
|
import os |
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') |
|
|
parser.add_argument('--model_id', type=str, required=True, |
|
|
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') |
|
|
parser.add_argument('--save_path', type=str, default='.', |
|
|
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic') |
|
|
args = parser.parse_args() |
|
|
|
|
|
# Load model |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True, |
|
|
) |
|
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
|
|
|
|
# Configure the quantization algorithm and scheme |
|
|
recipe = QuantizationModifier( |
|
|
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] |
|
|
) |
|
|
|
|
|
# Apply quantization |
|
|
oneshot(model=model, recipe=recipe) |
|
|
|
|
|
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic") |
|
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
|
|
# Save to disk in compressed-tensors format |
|
|
model.save_pretrained(save_path) |
|
|
tokenizer.save_pretrained(save_path) |
|
|
print(f"Model and tokenizer saved to: {save_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
``` |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: |
|
|
|
|
|
OpenLLM Leaderboard V1: |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
|
--tasks openllm \ |
|
|
--write_out \ |
|
|
--batch_size auto \ |
|
|
--output_path output_dir \ |
|
|
--show_config |
|
|
``` |
|
|
|
|
|
OpenLLM Leaderboard V2: |
|
|
``` |
|
|
lm_eval \ |
|
|
--model vllm \ |
|
|
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
|
--apply_chat_template \ |
|
|
--fewshot_as_multiturn \ |
|
|
--tasks leaderboard \ |
|
|
--write_out \ |
|
|
--batch_size auto \ |
|
|
--output_path output_dir \ |
|
|
--show_config |
|
|
|
|
|
``` |
|
|
|
|
|
### Accuracy |
|
|
|
|
|
#### OpenLLM Leaderboard V1 evaluation scores |
|
|
|
|
|
| Metric | mistralai/Mistral-Small-24B-Instruct-2501 | nm-testing/Mistral-Small-24B-Instruct-2501-FP8-dynamic | |
|
|
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
|
| ARC-Challenge (Acc-Norm, 25-shot) | 72.18 | 71.76 | |
|
|
| GSM8K (Strict-Match, 5-shot) | 90.14 | 89.01 | |
|
|
| HellaSwag (Acc-Norm, 10-shot) | 85.05 | 84.65 | |
|
|
| MMLU (Acc, 5-shot) | 80.69 | 80.55 | |
|
|
| TruthfulQA (MC2, 0-shot) | 65.55 | 64.85 | |
|
|
| Winogrande (Acc, 5-shot) | 83.11 | 82.48 | |
|
|
| **Average Score** | **79.45** | **78.88** | |
|
|
| **Recovery (%)** | **100.00** | **99.28** | |
|
|
|
|
|
#### OpenLLM Leaderboard V2 evaluation scores |
|
|
|
|
|
| Metric | mistralai/Mistral-Small-24B-Instruct-2501 | nm-testing/Mistral-Small-24B-Instruct-2501-FP8-dynamic | |
|
|
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
|
| IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 73.27 | 73.53 | |
|
|
| BBH (Acc-Norm, 3-shot) | 45.18 | 44.39 | |
|
|
| MMLU-Pro (Acc, 5-shot) | 38.83 | 37.28 | |
|
|
| **Average Score** | **52.42** | **51.73** | |
|
|
| **Recovery (%)** | **100.00** | **98.68** | |
|
|
| Math-Hard (Exact-Match, 4-shot) | 6.35 | 2.99 | |
|
|
| GPQA (Acc-Norm, 0-shot) | 8.29 | 6.97 | |
|
|
| MUSR (Acc-Norm, 0-shot) | 7.84 | 8.04 | |
|
|
|
|
|
Results on Math-Hard, GPQA, and MUSR are not considred for accuracy recovery calculation because the unquantized model has close to random prediction accuracy (6.35, 8.29, 7.84) which doesn't provide a reliable baseline for recovery calculation. |
|
|
|