NVIDIA-Nemotron-Nano-9B-v2-quantized.w4a16
Model Overview
- Model Architecture: NemotronHForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: INT4
- Release Date: 10/22/2025
- Version: 1.0
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing the weights of NVIDIA-Nemotron-Nano-9B-v2 to INT4 data type. This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized. Weights are quantized using a symmetric per-group scheme, with group size 64. The GPTQ algorithm is applied for quantization, as implemented in the llm-compressor library.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/NVIDIA-Nemotron-Nano-9B-v2-quantized.w4a16"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.6, top_p=0.95, top_k=20, min_p=0, max_tokens=256)
messages = [
{"role": "user", "content": prompt}
]
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from compressed_tensors.quantization import QuantizationScheme, QuantizationArgs, QuantizationType, QuantizationStrategy
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load model
model_stub = "nvidia/NVIDIA-Nemotron-Nano-9B-v2"
model_name = model_stub.split("/")[-1]
num_samples = 1024
max_seq_len = 8192
model = AutoModelForCausalLM.from_pretrained(model_stub)
tokenizer = AutoTokenizer.from_pretrained(model_stub)
def preprocess_fn(example):
return {"text": tokenizer.apply_chat_template(example["messages"], add_generation_prompt=False, tokenize=False)}
ds = load_dataset("neuralmagic/LLM_compression_calibration", split="train")
ds = ds.map(preprocess_fn)
# Configure the quantization algorithm and scheme
quant_scheme = QuantizationScheme(
targets=["Linear"],
weights=QuantizationArgs(
num_bits=4,
type=QuantizationType.INT,
symmetric=True,
group_size=64,
strategy=QuantizationStrategy.GROUP,
observer="mse",
actorder="weight"
),
input_activations=None,
output_activations=None,
)
recipe = [
GPTQModifier(
ignore=["lm_head", "NemotronHMamba2Mixer"],
dampening_frac=0.07,
config_groups={"group_0": quant_scheme},
)
]
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
The model was evaluated on the set of popular reasoning tasks AIME25, Math-500, and GPQA-Diamond, using lighteval v0.11.1.dev0.
vLLM v0.11.1rc2.dev191+g80e945298.precompiled was used as the inference engine for all evaluations.
Evaluation details
lighteval
lighteval_model_arguments.yaml
model_parameters:
model_name: "hosted_vllm/RedHatAI/NVIDIA-Nemotron-Nano-9B-v2-quantized.w4a16"
base_url: "http://0.0.0.0:8000/v1"
generation_parameters:
temperature: 0.6
min_p: 0.0
max_new_tokens: 65536
top_p: 0.95
seed: 0
lighteval endpoint litellm lighteval_model_arguments.yaml \
"lighteval|aime25|0,lighteval|math_500|0,lighteval|gpqa:diamond|0" \
--output-dir $OUTPUT_DIR \
--save-details
vllm serve RedHatAI/NVIDIA-Nemotron-Nano-9B-v2-quantized.w4a16 \
--trust-remote-code \
--mamba_ssm_cache_dtype float32 \
-tp 1 \
--port 8000 \
--gpu-memory-utilization 0.9
Accuracy
| Category | Benchmark | NVIDIA-Nemotron-Nano-9B-v2 | NVIDIA-Nemotron-Nano-9B-v2-quantized.w4a16 (this model) |
Recovery |
|---|---|---|---|---|
| Reasoning (generation) |
||||
| AIME 2025 | 61.33 | 58.00 | 94.6% | |
| GPQA diamond | 56.26 | 56.16 | 99.8% | |
| Math-lvl-5 | 96.08 | 96.16 | 100.0% | |
| Average Score | 71.22 | 70.11 | 98.44% |
- Downloads last month
- 41
Model tree for RedHatAI/NVIDIA-Nemotron-Nano-9B-v2-quantized.w4a16
Base model
nvidia/NVIDIA-Nemotron-Nano-12B-v2-Base