How can I repeat the eval results?
Should I change some chat template as Qwen3 is default a thinking model?
I'd run lm_eval with vllm 0.8.5 and lm-eval lastest version from git.
Use almost the same scripts in model card. (I've 4090 48g * 2 so I use tensor_parallel_size=2
export CUDA_VISIBLE_DEVICES=0,1
export MODEL=Qwen3-30B-A3B-FP8_dynamic
lm_eval \
  --model vllm \
  --model_args pretrained="$MODEL",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunked_prefill=True,tensor_parallel_size=2 \
  --tasks openllm \
  --apply_chat_template\
  --fewshot_as_multiturn \
  --batch_size auto
But the result I got is:
|Open LLM Leaderboard                    |    N/A|                |      |           |   |       |   |      |
| - arc_challenge                        |      1|none            |    25|acc        |β  | 0.6382|Β±  |0.0140|
|                                        |       |none            |    25|acc_norm   |β  | 0.5623|Β±  |0.0145|
| - gsm8k                                |      3|flexible-extract|     5|exact_match|β  | 0.2146|Β±  |0.0113|
|                                        |       |strict-match    |     5|exact_match|β  | 0.0061|Β±  |0.0021|
| - hellaswag                            |      1|none            |    10|acc        |β  | 0.6301|Β±  |0.0048|
|                                        |       |none            |    10|acc_norm   |β  | 0.7173|Β±  |0.0045|
| - mmlu                                 |      2|none            |      |acc        |β  | 0.4318|Β±  |0.0041|
| - truthfulqa_mc2                       |      3|none            |     0|acc        |β  | 0.5571|Β±  |0.0154|
| - winogrande                           |      1|none            |     5|acc        |β  | 0.7285|Β±  |0.0125|
The discrepancy is likely due to the thinking mode, which is enabled by default. OpenLLM-style evaluations work significantly better when disabling this behavior.
I used this branch from lm-evaluation-harness: https://github.com/neuralmagic/lm-evaluation-harness/tree/enable_thinking, which disables thinking mode by default (although the user can enable it via a vllm argument). I have pushed a PR to the upstream repo, but it hasn't landed yet.
Update I've try with --system_instruction "You are a helpful assistant. /no_think."
At least for gsm8k_platinum_cot I got 0.8776, But for official fp8 https://huggingface.co/Qwen/Qwen3-32B-FP8 I got 0.8983, bf16 version the value is 0.8809
Interesting. Thanks for the update. This level of variability is not uncommon for quantized models.
