| Quantization made by Richard Erkhov. | |
| [Github](https://github.com/RichardErkhov) | |
| [Discord](https://discord.gg/pvy7H8DZMG) | |
| [Request more models](https://github.com/RichardErkhov/quant_request) | |
| OpenMath-Mistral-7B-v0.1-hf - bnb 8bits | |
| - Model creator: https://huggingface.co/nvidia/ | |
| - Original model: https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf/ | |
| Original model description: | |
| --- | |
| license: apache-2.0 | |
| base_model: | |
| - mistralai/Mistral-7B-v0.1 | |
| datasets: | |
| - nvidia/OpenMathInstruct-1 | |
| language: | |
| - en | |
| tags: | |
| - nvidia | |
| - code | |
| - math | |
| --- | |
| # OpenMath-Mistral-7B-v0.1-hf | |
| OpenMath models were designed to solve mathematical problems by integrating text-based reasoning with code blocks | |
| executed by Python interpreter. The models were trained on [OpenMathInstruct-1](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1), | |
| a math instruction tuning dataset with 1.8M problem-solution pairs generated using permissively licensed | |
| [Mixtral-8x7B](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) model. | |
| <table border="1"> | |
| <tr> | |
| <td></td> | |
| <td colspan="2" style="text-align: center;">greedy</td> | |
| <td colspan="2" style="text-align: center;">majority@50</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: center;">model</td> | |
| <td style="text-align: center;">GSM8K</td> | |
| <td style="text-align: center;">MATH</td> | |
| <td style="text-align: center;">GMS8K</td> | |
| <td style="text-align: center;">MATH</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: right;">OpenMath-CodeLlama-7B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-7b-Python-hf">HF</a>)</td> | |
| <td style="text-align: center;">75.9</td> | |
| <td style="text-align: center;">43.6</td> | |
| <td style="text-align: center;">84.8</td> | |
| <td style="text-align: center;">55.6</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: right;">OpenMath-Mistral-7B (<a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Mistral-7B-v0.1-hf">HF</a>)</td> | |
| <td style="text-align: center;">80.2</td> | |
| <td style="text-align: center;">44.5</td> | |
| <td style="text-align: center;">86.9</td> | |
| <td style="text-align: center;">57.2</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: right;">OpenMath-CodeLlama-13B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-13b-Python-hf">HF</a>)</td> | |
| <td style="text-align: center;">78.8</td> | |
| <td style="text-align: center;">45.5</td> | |
| <td style="text-align: center;">86.8</td> | |
| <td style="text-align: center;">57.6</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: right;">OpenMath-CodeLlama-34B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-34b-Python-hf">HF</a>)</td> | |
| <td style="text-align: center;">80.7</td> | |
| <td style="text-align: center;">48.3</td> | |
| <td style="text-align: center;">88.0</td> | |
| <td style="text-align: center;">60.2</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: right;">OpenMath-Llama2-70B (<a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-Llama-2-70b-hf">HF</a>)</td> | |
| <td style="text-align: center;"><b>84.7</b></td> | |
| <td style="text-align: center;">46.3</td> | |
| <td style="text-align: center;">90.1</td> | |
| <td style="text-align: center;">58.3</td> | |
| </tr> | |
| <tr> | |
| <td style="text-align: right;">OpenMath-CodeLlama-70B (<a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python">nemo</a> | <a href="https://huggingface.co/nvidia/OpenMath-CodeLlama-70b-Python-hf">HF</a>)</td> | |
| <td style="text-align: center;">84.6</td> | |
| <td style="text-align: center;"><b>50.7</b></td> | |
| <td style="text-align: center;"><b>90.8</b></td> | |
| <td style="text-align: center;"><b>60.4</b></td> | |
| </tr> | |
| </table> | |
| The pipeline we used to produce these models is fully open-sourced! | |
| - [Code](https://github.com/Kipok/NeMo-Skills) | |
| - [Models](https://huggingface.co/collections/nvidia/openmath-65c5619de2ba059be0775014) | |
| - [Dataset](https://huggingface.co/datasets/nvidia/OpenMathInstruct-1) | |
| See our [paper](https://arxiv.org/abs/2402.10176) for more details! | |
| # How to use the models? | |
| Try to [run inference with our models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/inference.md) with just a few commands! | |
| # Reproducing our results | |
| We provide [all instructions](https://github.com/Kipok/NeMo-Skills/blob/main/docs/reproducing-results.md) to fully reproduce our results. | |
| # Improving other models | |
| To improve other models or to learn more about our code, read through the docs below. | |
| - [NeMo-Skills Pipeline](https://github.com/Kipok/NeMo-Skills) | |
| - [Generating synthetic data](https://github.com/Kipok/NeMo-Skills/blob/main/docs/synthetic-data-generation.md) | |
| - [Finetuning models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/finetuning.md) | |
| - [Evaluating models](https://github.com/Kipok/NeMo-Skills/blob/main/docs/evaluation.md) | |
| In our pipeline we use [NVIDIA NeMo](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/), | |
| an end-to-end, cloud-native framework to build, customize, and deploy generative AI models anywhere. | |
| It includes training and inferencing frameworks, guardrailing toolkits, data curation tools, and pretrained models, | |
| offering enterprises an easy, cost-effective, and fast way to adopt generative AI. | |
| # Citation | |
| If you find our work useful, please consider citing us! | |
| ```bibtex | |
| @article{toshniwal2024openmath, | |
| title = {OpenMathInstruct-1: A 1.8 Million Math Instruction Tuning Dataset}, | |
| author = {Shubham Toshniwal and Ivan Moshkov and Sean Narenthiran and Daria Gitman and Fei Jia and Igor Gitman}, | |
| year = {2024}, | |
| journal = {arXiv preprint arXiv: Arxiv-2402.10176} | |
| } | |
| ``` | |