swinv2-tiny-patch4-window8-256-dmae-humeda-DAV18
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.4318
- Accuracy: 0.6731
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 3.3548 | 1.0 | 22 | 1.5527 | 0.3077 |
| 3.2091 | 2.0 | 44 | 1.5476 | 0.3077 |
| 2.9355 | 3.0 | 66 | 1.3747 | 0.4808 |
| 2.3577 | 4.0 | 88 | 1.3003 | 0.4231 |
| 1.4766 | 5.0 | 110 | 1.1989 | 0.4808 |
| 1.3704 | 6.0 | 132 | 1.0006 | 0.6538 |
| 1.118 | 7.0 | 154 | 1.0605 | 0.6154 |
| 1.0178 | 8.0 | 176 | 0.9814 | 0.5962 |
| 0.8974 | 9.0 | 198 | 1.0096 | 0.6538 |
| 0.672 | 10.0 | 220 | 1.1785 | 0.6154 |
| 0.6533 | 11.0 | 242 | 1.3520 | 0.5577 |
| 0.4788 | 12.0 | 264 | 0.9816 | 0.75 |
| 0.5707 | 13.0 | 286 | 1.0714 | 0.6538 |
| 0.424 | 14.0 | 308 | 1.2733 | 0.6923 |
| 0.4466 | 15.0 | 330 | 1.1687 | 0.7115 |
| 0.4284 | 16.0 | 352 | 1.1879 | 0.6731 |
| 0.4528 | 17.0 | 374 | 1.1845 | 0.6346 |
| 0.3062 | 18.0 | 396 | 1.2126 | 0.7115 |
| 0.2953 | 19.0 | 418 | 1.4019 | 0.6154 |
| 0.3169 | 20.0 | 440 | 1.3913 | 0.6538 |
| 0.3235 | 21.0 | 462 | 1.1455 | 0.6346 |
| 0.3069 | 22.0 | 484 | 1.4152 | 0.6538 |
| 0.2402 | 23.0 | 506 | 1.1008 | 0.7115 |
| 0.2055 | 24.0 | 528 | 1.2535 | 0.6538 |
| 0.265 | 25.0 | 550 | 1.3737 | 0.6538 |
| 0.2097 | 26.0 | 572 | 1.4048 | 0.6923 |
| 0.2185 | 27.0 | 594 | 1.3243 | 0.6923 |
| 0.1778 | 28.0 | 616 | 1.3771 | 0.6346 |
| 0.1815 | 29.0 | 638 | 1.3688 | 0.5769 |
| 0.2201 | 30.0 | 660 | 1.3827 | 0.6346 |
| 0.1808 | 31.0 | 682 | 1.3749 | 0.6731 |
| 0.2013 | 32.0 | 704 | 1.4271 | 0.6538 |
| 0.1822 | 33.0 | 726 | 1.4023 | 0.6923 |
| 0.1602 | 34.0 | 748 | 1.3908 | 0.6731 |
| 0.1303 | 35.0 | 770 | 1.4396 | 0.6731 |
| 0.1848 | 36.0 | 792 | 1.4828 | 0.6923 |
| 0.0982 | 37.0 | 814 | 1.4231 | 0.6923 |
| 0.1267 | 38.0 | 836 | 1.4148 | 0.6731 |
| 0.1467 | 39.0 | 858 | 1.3743 | 0.6731 |
| 0.0891 | 40.0 | 880 | 1.4194 | 0.6923 |
| 0.1252 | 41.0 | 902 | 1.4187 | 0.6923 |
| 0.1189 | 42.0 | 924 | 1.4043 | 0.6346 |
| 0.1328 | 43.0 | 946 | 1.4175 | 0.6731 |
| 0.172 | 44.0 | 968 | 1.4249 | 0.6731 |
| 0.1324 | 45.0 | 990 | 1.4320 | 0.6731 |
| 0.1363 | 46.0 | 1012 | 1.4320 | 0.6731 |
| 0.125 | 47.0 | 1034 | 1.4318 | 0.6731 |
| 0.1122 | 47.7442 | 1050 | 1.4318 | 0.6731 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV18
Base model
microsoft/swinv2-tiny-patch4-window8-256