swinv2-tiny-patch4-window8-256-dmae-humeda-DAV18

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4318
  • Accuracy: 0.6731

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.2
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy
3.3548 1.0 22 1.5527 0.3077
3.2091 2.0 44 1.5476 0.3077
2.9355 3.0 66 1.3747 0.4808
2.3577 4.0 88 1.3003 0.4231
1.4766 5.0 110 1.1989 0.4808
1.3704 6.0 132 1.0006 0.6538
1.118 7.0 154 1.0605 0.6154
1.0178 8.0 176 0.9814 0.5962
0.8974 9.0 198 1.0096 0.6538
0.672 10.0 220 1.1785 0.6154
0.6533 11.0 242 1.3520 0.5577
0.4788 12.0 264 0.9816 0.75
0.5707 13.0 286 1.0714 0.6538
0.424 14.0 308 1.2733 0.6923
0.4466 15.0 330 1.1687 0.7115
0.4284 16.0 352 1.1879 0.6731
0.4528 17.0 374 1.1845 0.6346
0.3062 18.0 396 1.2126 0.7115
0.2953 19.0 418 1.4019 0.6154
0.3169 20.0 440 1.3913 0.6538
0.3235 21.0 462 1.1455 0.6346
0.3069 22.0 484 1.4152 0.6538
0.2402 23.0 506 1.1008 0.7115
0.2055 24.0 528 1.2535 0.6538
0.265 25.0 550 1.3737 0.6538
0.2097 26.0 572 1.4048 0.6923
0.2185 27.0 594 1.3243 0.6923
0.1778 28.0 616 1.3771 0.6346
0.1815 29.0 638 1.3688 0.5769
0.2201 30.0 660 1.3827 0.6346
0.1808 31.0 682 1.3749 0.6731
0.2013 32.0 704 1.4271 0.6538
0.1822 33.0 726 1.4023 0.6923
0.1602 34.0 748 1.3908 0.6731
0.1303 35.0 770 1.4396 0.6731
0.1848 36.0 792 1.4828 0.6923
0.0982 37.0 814 1.4231 0.6923
0.1267 38.0 836 1.4148 0.6731
0.1467 39.0 858 1.3743 0.6731
0.0891 40.0 880 1.4194 0.6923
0.1252 41.0 902 1.4187 0.6923
0.1189 42.0 924 1.4043 0.6346
0.1328 43.0 946 1.4175 0.6731
0.172 44.0 968 1.4249 0.6731
0.1324 45.0 990 1.4320 0.6731
0.1363 46.0 1012 1.4320 0.6731
0.125 47.0 1034 1.4318 0.6731
0.1122 47.7442 1050 1.4318 0.6731

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV18

Finetuned
(138)
this model