swinv2-tiny-patch4-window8-256-dmae-humeda-DAV60

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5934
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.5779 0.9630 13 1.5147 0.3509
1.532 1.9630 26 1.3726 0.5395
1.459 2.9630 39 0.9852 0.6184
1.0357 3.9630 52 0.8558 0.6140
0.9678 4.9630 65 0.7997 0.6623
0.9602 5.9630 78 0.7789 0.6711
0.7664 6.9630 91 0.8890 0.6184
0.8537 7.9630 104 0.6860 0.7105
0.7566 8.9630 117 0.6138 0.7588
0.7025 9.9630 130 0.5207 0.7939
0.6081 10.9630 143 0.5644 0.7763
0.631 11.9630 156 0.5859 0.7544
0.6163 12.9630 169 0.7182 0.7105
0.5743 13.9630 182 0.5643 0.7763
0.5752 14.9630 195 0.5028 0.7939
0.461 15.9630 208 0.5465 0.7807
0.4145 16.9630 221 0.5868 0.7719
0.4065 17.9630 234 0.5470 0.7807
0.501 18.9630 247 0.5406 0.7939
0.4374 19.9630 260 0.5534 0.7939
0.4614 20.9630 273 0.5485 0.8158
0.3836 21.9630 286 0.6217 0.7851
0.4474 22.9630 299 0.6069 0.7763
0.3893 23.9630 312 0.5981 0.7939
0.3548 24.9630 325 0.6003 0.7895
0.3454 25.9630 338 0.5897 0.8114
0.2857 26.9630 351 0.6031 0.8158
0.3282 27.9630 364 0.6140 0.7763
0.3088 28.9630 377 0.5934 0.8333
0.2943 29.9630 390 0.6545 0.7895
0.2857 30.9630 403 0.6423 0.7851
0.2882 31.9630 416 0.6610 0.7939
0.3342 32.9630 429 0.6815 0.7807
0.2679 33.9630 442 0.6481 0.8114
0.2756 34.9630 455 0.6518 0.8158
0.2733 35.9630 468 0.6514 0.8026
0.2749 36.9630 481 0.6525 0.8070
0.2416 37.9630 494 0.6447 0.8202
0.2766 38.9630 507 0.6359 0.8202
0.2528 39.9630 520 0.6481 0.8158

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV60

Finetuned
(138)
this model