swinv2-tiny-patch4-window8-256-dmae-humeda-DAV60
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5934
- Accuracy: 0.8333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.5779 | 0.9630 | 13 | 1.5147 | 0.3509 |
| 1.532 | 1.9630 | 26 | 1.3726 | 0.5395 |
| 1.459 | 2.9630 | 39 | 0.9852 | 0.6184 |
| 1.0357 | 3.9630 | 52 | 0.8558 | 0.6140 |
| 0.9678 | 4.9630 | 65 | 0.7997 | 0.6623 |
| 0.9602 | 5.9630 | 78 | 0.7789 | 0.6711 |
| 0.7664 | 6.9630 | 91 | 0.8890 | 0.6184 |
| 0.8537 | 7.9630 | 104 | 0.6860 | 0.7105 |
| 0.7566 | 8.9630 | 117 | 0.6138 | 0.7588 |
| 0.7025 | 9.9630 | 130 | 0.5207 | 0.7939 |
| 0.6081 | 10.9630 | 143 | 0.5644 | 0.7763 |
| 0.631 | 11.9630 | 156 | 0.5859 | 0.7544 |
| 0.6163 | 12.9630 | 169 | 0.7182 | 0.7105 |
| 0.5743 | 13.9630 | 182 | 0.5643 | 0.7763 |
| 0.5752 | 14.9630 | 195 | 0.5028 | 0.7939 |
| 0.461 | 15.9630 | 208 | 0.5465 | 0.7807 |
| 0.4145 | 16.9630 | 221 | 0.5868 | 0.7719 |
| 0.4065 | 17.9630 | 234 | 0.5470 | 0.7807 |
| 0.501 | 18.9630 | 247 | 0.5406 | 0.7939 |
| 0.4374 | 19.9630 | 260 | 0.5534 | 0.7939 |
| 0.4614 | 20.9630 | 273 | 0.5485 | 0.8158 |
| 0.3836 | 21.9630 | 286 | 0.6217 | 0.7851 |
| 0.4474 | 22.9630 | 299 | 0.6069 | 0.7763 |
| 0.3893 | 23.9630 | 312 | 0.5981 | 0.7939 |
| 0.3548 | 24.9630 | 325 | 0.6003 | 0.7895 |
| 0.3454 | 25.9630 | 338 | 0.5897 | 0.8114 |
| 0.2857 | 26.9630 | 351 | 0.6031 | 0.8158 |
| 0.3282 | 27.9630 | 364 | 0.6140 | 0.7763 |
| 0.3088 | 28.9630 | 377 | 0.5934 | 0.8333 |
| 0.2943 | 29.9630 | 390 | 0.6545 | 0.7895 |
| 0.2857 | 30.9630 | 403 | 0.6423 | 0.7851 |
| 0.2882 | 31.9630 | 416 | 0.6610 | 0.7939 |
| 0.3342 | 32.9630 | 429 | 0.6815 | 0.7807 |
| 0.2679 | 33.9630 | 442 | 0.6481 | 0.8114 |
| 0.2756 | 34.9630 | 455 | 0.6518 | 0.8158 |
| 0.2733 | 35.9630 | 468 | 0.6514 | 0.8026 |
| 0.2749 | 36.9630 | 481 | 0.6525 | 0.8070 |
| 0.2416 | 37.9630 | 494 | 0.6447 | 0.8202 |
| 0.2766 | 38.9630 | 507 | 0.6359 | 0.8202 |
| 0.2528 | 39.9630 | 520 | 0.6481 | 0.8158 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV60
Base model
microsoft/swinv2-tiny-patch4-window8-256