swinv2-tiny-patch4-window8-256-dmae-humeda-DAV64

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2871
  • Accuracy: 0.9371

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1417 1.0 15 1.0312 0.5429
0.9163 2.0 30 0.7115 0.7943
0.7042 3.0 45 0.4227 0.8343
0.4976 4.0 60 0.3409 0.8686
0.4469 5.0 75 0.3059 0.8971
0.3746 6.0 90 0.2957 0.8914
0.3667 7.0 105 0.3036 0.8686
0.3026 8.0 120 0.2555 0.9086
0.2732 9.0 135 0.3009 0.9029
0.2518 10.0 150 0.2463 0.9029
0.2029 11.0 165 0.2345 0.9086
0.2698 12.0 180 0.2969 0.9029
0.2228 13.0 195 0.2966 0.9086
0.2213 14.0 210 0.4314 0.8514
0.1974 15.0 225 0.3352 0.8971
0.1865 16.0 240 0.2836 0.9086
0.157 17.0 255 0.2436 0.9086
0.1588 18.0 270 0.2618 0.88
0.1533 19.0 285 0.2315 0.92
0.1424 20.0 300 0.2358 0.9143
0.1278 21.0 315 0.2752 0.9086
0.1328 22.0 330 0.2196 0.92
0.124 23.0 345 0.2491 0.9143
0.1116 24.0 360 0.2085 0.92
0.1235 25.0 375 0.2379 0.92
0.1746 26.0 390 0.2749 0.9257
0.1143 27.0 405 0.2813 0.92
0.1256 28.0 420 0.3038 0.9086
0.0773 29.0 435 0.2903 0.9314
0.0981 30.0 450 0.2928 0.92
0.0717 31.0 465 0.3073 0.9086
0.1143 32.0 480 0.3466 0.8914
0.0821 33.0 495 0.3079 0.9257
0.0582 34.0 510 0.2845 0.9314
0.1015 35.0 525 0.3610 0.9029
0.075 36.0 540 0.2871 0.9371
0.0783 37.0 555 0.2788 0.9257
0.0919 38.0 570 0.2926 0.9257
0.0863 39.0 585 0.2911 0.9086
0.0721 40.0 600 0.3360 0.9143
0.0994 41.0 615 0.2865 0.9086
0.0734 42.0 630 0.3155 0.9143
0.0935 43.0 645 0.3129 0.9086
0.0651 44.0 660 0.2924 0.9143
0.0732 45.0 675 0.2961 0.9143

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
3
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV64

Finetuned
(138)
this model