swinv2-tiny-patch4-window8-256-dmae-humeda-DAV64
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2871
- Accuracy: 0.9371
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.1417 | 1.0 | 15 | 1.0312 | 0.5429 |
| 0.9163 | 2.0 | 30 | 0.7115 | 0.7943 |
| 0.7042 | 3.0 | 45 | 0.4227 | 0.8343 |
| 0.4976 | 4.0 | 60 | 0.3409 | 0.8686 |
| 0.4469 | 5.0 | 75 | 0.3059 | 0.8971 |
| 0.3746 | 6.0 | 90 | 0.2957 | 0.8914 |
| 0.3667 | 7.0 | 105 | 0.3036 | 0.8686 |
| 0.3026 | 8.0 | 120 | 0.2555 | 0.9086 |
| 0.2732 | 9.0 | 135 | 0.3009 | 0.9029 |
| 0.2518 | 10.0 | 150 | 0.2463 | 0.9029 |
| 0.2029 | 11.0 | 165 | 0.2345 | 0.9086 |
| 0.2698 | 12.0 | 180 | 0.2969 | 0.9029 |
| 0.2228 | 13.0 | 195 | 0.2966 | 0.9086 |
| 0.2213 | 14.0 | 210 | 0.4314 | 0.8514 |
| 0.1974 | 15.0 | 225 | 0.3352 | 0.8971 |
| 0.1865 | 16.0 | 240 | 0.2836 | 0.9086 |
| 0.157 | 17.0 | 255 | 0.2436 | 0.9086 |
| 0.1588 | 18.0 | 270 | 0.2618 | 0.88 |
| 0.1533 | 19.0 | 285 | 0.2315 | 0.92 |
| 0.1424 | 20.0 | 300 | 0.2358 | 0.9143 |
| 0.1278 | 21.0 | 315 | 0.2752 | 0.9086 |
| 0.1328 | 22.0 | 330 | 0.2196 | 0.92 |
| 0.124 | 23.0 | 345 | 0.2491 | 0.9143 |
| 0.1116 | 24.0 | 360 | 0.2085 | 0.92 |
| 0.1235 | 25.0 | 375 | 0.2379 | 0.92 |
| 0.1746 | 26.0 | 390 | 0.2749 | 0.9257 |
| 0.1143 | 27.0 | 405 | 0.2813 | 0.92 |
| 0.1256 | 28.0 | 420 | 0.3038 | 0.9086 |
| 0.0773 | 29.0 | 435 | 0.2903 | 0.9314 |
| 0.0981 | 30.0 | 450 | 0.2928 | 0.92 |
| 0.0717 | 31.0 | 465 | 0.3073 | 0.9086 |
| 0.1143 | 32.0 | 480 | 0.3466 | 0.8914 |
| 0.0821 | 33.0 | 495 | 0.3079 | 0.9257 |
| 0.0582 | 34.0 | 510 | 0.2845 | 0.9314 |
| 0.1015 | 35.0 | 525 | 0.3610 | 0.9029 |
| 0.075 | 36.0 | 540 | 0.2871 | 0.9371 |
| 0.0783 | 37.0 | 555 | 0.2788 | 0.9257 |
| 0.0919 | 38.0 | 570 | 0.2926 | 0.9257 |
| 0.0863 | 39.0 | 585 | 0.2911 | 0.9086 |
| 0.0721 | 40.0 | 600 | 0.3360 | 0.9143 |
| 0.0994 | 41.0 | 615 | 0.2865 | 0.9086 |
| 0.0734 | 42.0 | 630 | 0.3155 | 0.9143 |
| 0.0935 | 43.0 | 645 | 0.3129 | 0.9086 |
| 0.0651 | 44.0 | 660 | 0.2924 | 0.9143 |
| 0.0732 | 45.0 | 675 | 0.2961 | 0.9143 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV64
Base model
microsoft/swinv2-tiny-patch4-window8-256