swinv2-tiny-patch4-window8-256-dmae-humeda-DAV66
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2728
- Accuracy: 0.9086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 45
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 1.1391 | 1.0 | 15 | 1.0750 | 0.4057 |
| 0.9921 | 2.0 | 30 | 0.9329 | 0.6857 |
| 0.8345 | 3.0 | 45 | 0.5657 | 0.8229 |
| 0.5658 | 4.0 | 60 | 0.4445 | 0.8343 |
| 0.5066 | 5.0 | 75 | 0.4037 | 0.84 |
| 0.4016 | 6.0 | 90 | 0.3566 | 0.8629 |
| 0.4143 | 7.0 | 105 | 0.3347 | 0.8686 |
| 0.3599 | 8.0 | 120 | 0.3101 | 0.8743 |
| 0.3245 | 9.0 | 135 | 0.3187 | 0.88 |
| 0.3025 | 10.0 | 150 | 0.2728 | 0.9086 |
| 0.2546 | 11.0 | 165 | 0.2887 | 0.8743 |
| 0.2963 | 12.0 | 180 | 0.3797 | 0.8571 |
| 0.27 | 13.0 | 195 | 0.4297 | 0.84 |
| 0.2374 | 14.0 | 210 | 0.4063 | 0.8457 |
| 0.2626 | 15.0 | 225 | 0.3277 | 0.8914 |
| 0.2268 | 16.0 | 240 | 0.3114 | 0.8914 |
| 0.1787 | 17.0 | 255 | 0.3716 | 0.8571 |
| 0.2187 | 18.0 | 270 | 0.3290 | 0.88 |
| 0.1818 | 19.0 | 285 | 0.3367 | 0.9029 |
| 0.1822 | 20.0 | 300 | 0.3245 | 0.8857 |
| 0.1747 | 21.0 | 315 | 0.3293 | 0.88 |
| 0.1728 | 22.0 | 330 | 0.3330 | 0.88 |
| 0.1688 | 23.0 | 345 | 0.3699 | 0.8857 |
| 0.1953 | 24.0 | 360 | 0.3193 | 0.9029 |
| 0.1677 | 25.0 | 375 | 0.3689 | 0.8914 |
| 0.1658 | 26.0 | 390 | 0.3698 | 0.8971 |
| 0.147 | 27.0 | 405 | 0.3759 | 0.8914 |
| 0.1599 | 28.0 | 420 | 0.4673 | 0.8571 |
| 0.1165 | 29.0 | 435 | 0.4239 | 0.88 |
| 0.1235 | 30.0 | 450 | 0.4119 | 0.8857 |
| 0.098 | 31.0 | 465 | 0.4140 | 0.8914 |
| 0.1042 | 32.0 | 480 | 0.4382 | 0.88 |
| 0.1052 | 33.0 | 495 | 0.4593 | 0.8743 |
| 0.1021 | 34.0 | 510 | 0.5186 | 0.8629 |
| 0.1074 | 35.0 | 525 | 0.4545 | 0.88 |
| 0.0964 | 36.0 | 540 | 0.4612 | 0.88 |
| 0.1047 | 37.0 | 555 | 0.4607 | 0.8743 |
| 0.1218 | 38.0 | 570 | 0.4805 | 0.8629 |
| 0.1073 | 39.0 | 585 | 0.4456 | 0.8914 |
| 0.0948 | 40.0 | 600 | 0.4985 | 0.8743 |
| 0.1087 | 41.0 | 615 | 0.4687 | 0.8857 |
| 0.1055 | 42.0 | 630 | 0.4863 | 0.8857 |
| 0.1082 | 43.0 | 645 | 0.4663 | 0.8914 |
| 0.0829 | 44.0 | 660 | 0.4579 | 0.8857 |
| 0.0774 | 45.0 | 675 | 0.4660 | 0.8857 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- -
Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV66
Base model
microsoft/swinv2-tiny-patch4-window8-256