swinv2-tiny-patch4-window8-256-dmae-humeda-DAV66

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2728
  • Accuracy: 0.9086

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 45
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.1391 1.0 15 1.0750 0.4057
0.9921 2.0 30 0.9329 0.6857
0.8345 3.0 45 0.5657 0.8229
0.5658 4.0 60 0.4445 0.8343
0.5066 5.0 75 0.4037 0.84
0.4016 6.0 90 0.3566 0.8629
0.4143 7.0 105 0.3347 0.8686
0.3599 8.0 120 0.3101 0.8743
0.3245 9.0 135 0.3187 0.88
0.3025 10.0 150 0.2728 0.9086
0.2546 11.0 165 0.2887 0.8743
0.2963 12.0 180 0.3797 0.8571
0.27 13.0 195 0.4297 0.84
0.2374 14.0 210 0.4063 0.8457
0.2626 15.0 225 0.3277 0.8914
0.2268 16.0 240 0.3114 0.8914
0.1787 17.0 255 0.3716 0.8571
0.2187 18.0 270 0.3290 0.88
0.1818 19.0 285 0.3367 0.9029
0.1822 20.0 300 0.3245 0.8857
0.1747 21.0 315 0.3293 0.88
0.1728 22.0 330 0.3330 0.88
0.1688 23.0 345 0.3699 0.8857
0.1953 24.0 360 0.3193 0.9029
0.1677 25.0 375 0.3689 0.8914
0.1658 26.0 390 0.3698 0.8971
0.147 27.0 405 0.3759 0.8914
0.1599 28.0 420 0.4673 0.8571
0.1165 29.0 435 0.4239 0.88
0.1235 30.0 450 0.4119 0.8857
0.098 31.0 465 0.4140 0.8914
0.1042 32.0 480 0.4382 0.88
0.1052 33.0 495 0.4593 0.8743
0.1021 34.0 510 0.5186 0.8629
0.1074 35.0 525 0.4545 0.88
0.0964 36.0 540 0.4612 0.88
0.1047 37.0 555 0.4607 0.8743
0.1218 38.0 570 0.4805 0.8629
0.1073 39.0 585 0.4456 0.8914
0.0948 40.0 600 0.4985 0.8743
0.1087 41.0 615 0.4687 0.8857
0.1055 42.0 630 0.4863 0.8857
0.1082 43.0 645 0.4663 0.8914
0.0829 44.0 660 0.4579 0.8857
0.0774 45.0 675 0.4660 0.8857

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.4.1
  • Tokenizers 0.21.1
Downloads last month
-
Safetensors
Model size
27.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for RobertoSonic/swinv2-tiny-patch4-window8-256-dmae-humeda-DAV66

Finetuned
(138)
this model