SentenceTransformer based on cointegrated/rubert-tiny2
This is a sentence-transformers model finetuned from cointegrated/rubert-tiny2. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: cointegrated/rubert-tiny2
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 312 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Беговая дорожка Hasttings CT100',
'Вертикальный велотренажер Sole B94 (2023)',
'Беговая дорожка Koenigsmann ML в Москве',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 312]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
cv - Evaluated with
BinaryClassificationEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 1.0 |
| cosine_accuracy_threshold | 0.7653 |
| cosine_f1 | 1.0 |
| cosine_f1_threshold | 0.7653 |
| cosine_precision | 1.0 |
| cosine_recall | 1.0 |
| cosine_ap | 1.0 |
| dot_accuracy | 1.0 |
| dot_accuracy_threshold | 0.7653 |
| dot_f1 | 1.0 |
| dot_f1_threshold | 0.7653 |
| dot_precision | 1.0 |
| dot_recall | 1.0 |
| dot_ap | 1.0 |
| manhattan_accuracy | 1.0 |
| manhattan_accuracy_threshold | 9.3309 |
| manhattan_f1 | 1.0 |
| manhattan_f1_threshold | 9.3309 |
| manhattan_precision | 1.0 |
| manhattan_recall | 1.0 |
| manhattan_ap | 1.0 |
| euclidean_accuracy | 1.0 |
| euclidean_accuracy_threshold | 0.6849 |
| euclidean_f1 | 1.0 |
| euclidean_f1_threshold | 0.6849 |
| euclidean_precision | 1.0 |
| euclidean_recall | 1.0 |
| euclidean_ap | 1.0 |
| max_accuracy | 1.0 |
| max_accuracy_threshold | 9.3309 |
| max_f1 | 1.0 |
| max_f1_threshold | 9.3309 |
| max_precision | 1.0 |
| max_recall | 1.0 |
| max_ap | 1.0 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 13,690 training samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 15.4 tokens
- max: 44 tokens
- min: 7 tokens
- mean: 15.39 tokens
- max: 32 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence1 sentence2 score Велотренажер аэродинамический Spirit Fitness AB900+ Air Bike в МосквеБаттерфляй / Задняя дельта Impulse ExoForm FE97150.0Эллиптический тренажер Sports Art E835Эллиптический тренажер Clear Fit AirElliptical AE 401.0Мультистанция Nohrd SlimBeamСведение бедра UltraGym LF-5100.0 - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Evaluation Dataset
Unnamed Dataset
- Size: 28 evaluation samples
- Columns:
sentence1,sentence2, andscore - Approximate statistics based on the first 28 samples:
sentence1 sentence2 score type string string float details - min: 8 tokens
- mean: 14.79 tokens
- max: 23 tokens
- min: 11 tokens
- mean: 16.21 tokens
- max: 22 tokens
- min: 0.0
- mean: 0.57
- max: 1.0
- Samples:
sentence1 sentence2 score Беговая дорожка Carbon YukonКросстренер Octane Fitness Max Trainer MTX в Москве0.0Беговая дорожка Беговая дорожка DFC BOSS I T-B1 для реабилитацииБеговая дорожка Protrain N6J1.0Грузоблочный тренажер Precor C010ES - жим ногами/икроножные в МосквеЯгодичные мышцы Bronze Gym MNM-016A1.0 - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.5, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 32per_device_eval_batch_size: 32num_train_epochs: 10warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | cv_max_ap |
|---|---|---|---|---|
| 0 | 0 | - | - | 0.6247 |
| 1.0 | 428 | - | 0.0121 | 0.9407 |
| 1.1682 | 500 | 0.0121 | - | - |
| 2.0 | 856 | - | 0.0105 | 0.9805 |
| 2.3364 | 1000 | 0.0037 | - | - |
| 3.0 | 1284 | - | 0.0085 | 0.9821 |
| 3.5047 | 1500 | 0.0028 | - | - |
| 4.0 | 1712 | - | 0.0073 | 0.9891 |
| 4.6729 | 2000 | 0.0025 | - | - |
| 5.0 | 2140 | - | 0.0065 | 0.9924 |
| 5.8411 | 2500 | 0.0021 | - | - |
| 6.0 | 2568 | - | 0.0053 | 0.9963 |
| 7.0 | 2996 | - | 0.0055 | 0.9963 |
| 7.0093 | 3000 | 0.0018 | - | - |
| 8.0 | 3424 | - | 0.0041 | 1.0 |
| 8.1776 | 3500 | 0.0015 | - | - |
| 9.0 | 3852 | - | 0.0040 | 1.0 |
| 9.3458 | 4000 | 0.0014 | - | - |
| 10.0 | 4280 | - | 0.0036 | 1.0 |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- -
Model tree for Shakhovak/tiny_sent_transformer
Base model
cointegrated/rubert-tiny2Evaluation results
- Cosine Accuracy on cvself-reported1.000
- Cosine Accuracy Threshold on cvself-reported0.765
- Cosine F1 on cvself-reported1.000
- Cosine F1 Threshold on cvself-reported0.765
- Cosine Precision on cvself-reported1.000
- Cosine Recall on cvself-reported1.000
- Cosine Ap on cvself-reported1.000
- Dot Accuracy on cvself-reported1.000
- Dot Accuracy Threshold on cvself-reported0.765
- Dot F1 on cvself-reported1.000