Direct Use
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
model_name = "SkyAsl/Bert-Emotion_classifier"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
text = "I am so happy to see you!"
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits, dim=1).item()
id2label = {
0: "sadness", 1: "joy", 2: "love",
3: "anger", 4: "fear", 5: "surprise"
}
print("Predicted emotion:", id2label[predicted_class])
Training Details
Training Data
https://huggingface.co/datasets/dair-ai/emotion
Training Hyperparameters
lr = 2e-4 batch_size = 128 epochs = 5 weight_decay = 0.01
Metrics
training_loss: 0.106100 validation_loss: 0.143851 accuracy: 0.940000
- Downloads last month
- 4
Model tree for SkyAsl/Bert-Emotion_classifier
Base model
google-bert/bert-base-uncased