Matryoshka Representation Learning
Paper
•
2205.13147
•
Published
•
25
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Steve77/modernbert-embed-base-bible")
# Run inference
sentences = [
"Quelles tâches les Lévites devaient-ils accomplir dans le service de la maison de l'Éternel?",
"Ils devaient prendre soin des parvis et des chambres, purifier toutes les choses saintes, s'occuper des pains de proposition, de la fleur de farine pour les offrandes, des galettes sans levain, des gâteaux cuits sur la plaque et des gâteaux frits, et de toutes les mesures de capacité et de longueur.",
"Les chefs des maisons paternelles, les chefs des tribus d'Israël, les chefs de milliers et de centaines, et les intendants du roi.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
dim_768, dim_512, dim_256, dim_128 and dim_64InformationRetrievalEvaluator| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|---|---|---|---|---|---|
| cosine_accuracy@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
| cosine_accuracy@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 |
| cosine_accuracy@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 |
| cosine_accuracy@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 |
| cosine_precision@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
| cosine_precision@3 | 0.0828 | 0.0801 | 0.0759 | 0.0682 | 0.0532 |
| cosine_precision@5 | 0.0552 | 0.0544 | 0.0521 | 0.0466 | 0.0372 |
| cosine_precision@10 | 0.032 | 0.0316 | 0.0308 | 0.0279 | 0.0227 |
| cosine_recall@1 | 0.175 | 0.1716 | 0.1602 | 0.1437 | 0.1107 |
| cosine_recall@3 | 0.2484 | 0.2402 | 0.2276 | 0.2047 | 0.1595 |
| cosine_recall@5 | 0.2762 | 0.272 | 0.2603 | 0.2331 | 0.1862 |
| cosine_recall@10 | 0.3203 | 0.3162 | 0.3075 | 0.2794 | 0.2272 |
| cosine_ndcg@10 | 0.2443 | 0.2395 | 0.2284 | 0.2057 | 0.1633 |
| cosine_ndcg@15 | 0.2525 | 0.2464 | 0.2357 | 0.2141 | 0.17 |
| cosine_ndcg@20 | 0.2574 | 0.2517 | 0.2405 | 0.2194 | 0.1746 |
| cosine_mrr@10 | 0.2205 | 0.2155 | 0.2038 | 0.1829 | 0.1435 |
| cosine_map@100 | 0.2276 | 0.2226 | 0.2108 | 0.1901 | 0.15 |
anchor and positive| anchor | positive | |
|---|---|---|
| type | string | string |
| details |
|
|
| anchor | positive |
|---|---|
Quels sont les noms des fils de Schobal? |
Aljan, Manahath, Ébal, Schephi et Onam |
Quels sont les noms des fils de Tsibeon? |
Ajja et Ana |
Qui est le fils d'Ana? |
Dischon |
MatryoshkaLoss with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
eval_strategy: epochper_device_train_batch_size: 16per_device_eval_batch_size: 16gradient_accumulation_steps: 16learning_rate: 2e-05num_train_epochs: 4lr_scheduler_type: cosinewarmup_ratio: 0.1bf16: Trueload_best_model_at_end: Trueoptim: adamw_torch_fusedbatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 16eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 4max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | dim_768_cosine_ndcg@20 | dim_512_cosine_ndcg@20 | dim_256_cosine_ndcg@20 | dim_128_cosine_ndcg@20 | dim_64_cosine_ndcg@20 |
|---|---|---|---|---|---|---|---|
| 0.0538 | 10 | 12.274 | - | - | - | - | - |
| 0.1076 | 20 | 11.5084 | - | - | - | - | - |
| 0.1615 | 30 | 10.5276 | - | - | - | - | - |
| 0.2153 | 40 | 9.0432 | - | - | - | - | - |
| 0.2691 | 50 | 7.572 | - | - | - | - | - |
| 0.3229 | 60 | 7.7696 | - | - | - | - | - |
| 0.3767 | 70 | 6.5673 | - | - | - | - | - |
| 0.4305 | 80 | 6.6586 | - | - | - | - | - |
| 0.4844 | 90 | 5.5276 | - | - | - | - | - |
| 0.5382 | 100 | 5.9891 | - | - | - | - | - |
| 0.5920 | 110 | 5.2983 | - | - | - | - | - |
| 0.6458 | 120 | 5.6242 | - | - | - | - | - |
| 0.6996 | 130 | 5.498 | - | - | - | - | - |
| 0.7534 | 140 | 4.4201 | - | - | - | - | - |
| 0.8073 | 150 | 4.3818 | - | - | - | - | - |
| 0.8611 | 160 | 4.2175 | - | - | - | - | - |
| 0.9149 | 170 | 4.2341 | - | - | - | - | - |
| 0.9687 | 180 | 4.3349 | - | - | - | - | - |
| 0.9956 | 185 | - | 0.2664 | 0.2607 | 0.2508 | 0.2263 | 0.1796 |
| 1.0269 | 190 | 4.6803 | - | - | - | - | - |
| 1.0807 | 200 | 3.877 | - | - | - | - | - |
| 1.1345 | 210 | 4.0309 | - | - | - | - | - |
| 1.1884 | 220 | 4.0755 | - | - | - | - | - |
| 1.2422 | 230 | 3.9068 | - | - | - | - | - |
| 1.2960 | 240 | 4.188 | - | - | - | - | - |
| 1.3498 | 250 | 4.3417 | - | - | - | - | - |
| 1.4036 | 260 | 4.0526 | - | - | - | - | - |
| 1.4575 | 270 | 3.3933 | - | - | - | - | - |
| 1.5113 | 280 | 3.8309 | - | - | - | - | - |
| 1.5651 | 290 | 3.5633 | - | - | - | - | - |
| 1.6189 | 300 | 3.8179 | - | - | - | - | - |
| 1.6727 | 310 | 4.0671 | - | - | - | - | - |
| 1.7265 | 320 | 3.3919 | - | - | - | - | - |
| 1.7804 | 330 | 2.6578 | - | - | - | - | - |
| 1.8342 | 340 | 2.6953 | - | - | - | - | - |
| 1.8880 | 350 | 2.8858 | - | - | - | - | - |
| 1.9418 | 360 | 2.8933 | - | - | - | - | - |
| 1.9956 | 370 | 2.9603 | 0.2775 | 0.2737 | 0.2637 | 0.2402 | 0.1916 |
| 2.0538 | 380 | 3.3361 | - | - | - | - | - |
| 2.1076 | 390 | 2.7904 | - | - | - | - | - |
| 2.1615 | 400 | 3.0108 | - | - | - | - | - |
| 2.2153 | 410 | 2.8917 | - | - | - | - | - |
| 2.2691 | 420 | 3.0295 | - | - | - | - | - |
| 2.3229 | 430 | 3.5609 | - | - | - | - | - |
| 2.3767 | 440 | 2.7722 | - | - | - | - | - |
| 2.4305 | 450 | 3.2115 | - | - | - | - | - |
| 2.4844 | 460 | 2.6333 | - | - | - | - | - |
| 2.5382 | 470 | 3.2503 | - | - | - | - | - |
| 2.5920 | 480 | 2.7708 | - | - | - | - | - |
| 2.6458 | 490 | 3.167 | - | - | - | - | - |
| 2.6996 | 500 | 3.1447 | - | - | - | - | - |
| 2.7534 | 510 | 2.0428 | - | - | - | - | - |
| 2.8073 | 520 | 2.0001 | - | - | - | - | - |
| 2.8611 | 530 | 2.0826 | - | - | - | - | - |
| 2.9149 | 540 | 2.0853 | - | - | - | - | - |
| 2.9687 | 550 | 2.2365 | - | - | - | - | - |
| 2.9956 | 555 | - | 0.2660 | 0.2604 | 0.2509 | 0.2266 | 0.1810 |
| 3.0269 | 560 | 2.762 | - | - | - | - | - |
| 3.0807 | 570 | 2.1219 | - | - | - | - | - |
| 3.1345 | 580 | 2.2908 | - | - | - | - | - |
| 3.1884 | 590 | 2.6195 | - | - | - | - | - |
| 3.2422 | 600 | 2.3468 | - | - | - | - | - |
| 3.2960 | 610 | 2.7504 | - | - | - | - | - |
| 3.3498 | 620 | 2.9486 | - | - | - | - | - |
| 3.4036 | 630 | 2.7281 | - | - | - | - | - |
| 3.4575 | 640 | 2.188 | - | - | - | - | - |
| 3.5113 | 650 | 2.5494 | - | - | - | - | - |
| 3.5651 | 660 | 2.426 | - | - | - | - | - |
| 3.6189 | 670 | 2.6478 | - | - | - | - | - |
| 3.6727 | 680 | 2.9209 | - | - | - | - | - |
| 3.7265 | 690 | 2.3512 | - | - | - | - | - |
| 3.7804 | 700 | 1.6746 | - | - | - | - | - |
| 3.8342 | 710 | 1.739 | - | - | - | - | - |
| 3.8880 | 720 | 1.951 | - | - | - | - | - |
| 3.9418 | 730 | 1.9886 | - | - | - | - | - |
| 3.9956 | 740 | 2.1022 | 0.2574 | 0.2517 | 0.2405 | 0.2194 | 0.1746 |
Carbon emissions were measured using CodeCarbon.
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
answerdotai/ModernBERT-base