SentenceTransformer based on nlpai-lab/KURE-v1
This is a sentence-transformers model finetuned from nlpai-lab/KURE-v1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nlpai-lab/KURE-v1
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'교수회에서 출석인원 과반수의 찬성이 필요한 이유가 뭐야?',
'제 77 조 (회의)\n교무회의는 재적인원 과반수의 출석과 출석인원 과반수의 찬성으로 의결한다.',
'제 22 조 (보증인)\n대학 입학 전형에 따라 보증인을 둘 수 있으며, 보증인은 당해 학생의 보호자이어야 하며 부득이한 경우에는 재학 중 학비, 기타 신상에 관한 일체의 책임을 질 수 있는 자로 한다.\n보증인의 주소 및 신상의 변동이 있을 때에는 즉시 신고하여야 한다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,609 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 9 tokens
- mean: 17.35 tokens
- max: 29 tokens
- min: 18 tokens
- mean: 104.74 tokens
- max: 566 tokens
- min: 0.0
- mean: 0.09
- max: 1.0
- Samples:
sentence_0 sentence_1 label 한동대학교 교무회의는 어떻게 의결되나요?제 13 조 (입학전형)
입학전형은 당해연도 한국대학교육협의회의 대학입학전형기본사항, 이 대학교의 대학입학전형시행계획과 모집요강에 따라 선발한다.
입학전형의 전형요소와 일정등 상세한 사항은 총장이 따로 정한다.
입학전형을 시행함에 있어 입학사정관제로 학생을 선발할 수 있으며, 입학사정관제의 운영에 관한 세부사항은 총장이 따로 정한다.0.0한동대학교 교수회는 누가 소집하나요?제 26 조 (복학)
복학의 절차 및 시기 등에 관하여는 학사운영규정으로 정한다.
제25조 제5항에 의거 미등록휴학된 자는 다음학기 제1항의 절차에 따라 복학하거나 휴학하여야 한다.0.0간행물을 발간, 배포 및 게시할 때 규정은 무엇인가요?제 7 조 (학년도 및 학기)
학년도는 3월 1일부터 다음해 2월말일까지로 한다.
학년도는 다음과 같이 두 학기로 나누는 것을 원칙으로 한다.
다만, 수업은 2주를 초과하지 않는 범위내에서 학기 개시일 전에 개강할 수 있다.
제1학기 : 3월 1일부터 8월 31일까지.
제2학기 : 9월 1일부터 다음해 2월 말일까지.
하기 및 동기 방학기간 중에 1개 이상의 계절학기를 둘 수 있으며, 계절학기 운영에 관한 사항은 총장이 따로 정한다.
정규학기 중 학생들이 자기주도적 학습활동을 할 수 있는 자유학기를 둘 수 있으며, 자유학기 운영에 관한 사항은 총장이 따로 정한다.
정규학기 및 계절학기 중 학생들이 진로적성 탐색에 집중하거나 문제발굴과 해결을 위한 참여적 학습활동 위주의 혁신학기를 둘 수 있으며, 혁신학기 운영에 관한 사항은 총장이 따로 정한다.0.0 - Loss:
ContrastiveLosswith these parameters:{ "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 0.3, "size_average": true }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 2per_device_eval_batch_size: 2num_train_epochs: 10fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 2per_device_eval_batch_size: 2per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.5537 | 500 | 0.004 |
| 1.0 | 903 | - |
| 1.1074 | 1000 | 0.0021 |
| 1.6611 | 1500 | 0.0017 |
| 2.0 | 1806 | - |
| 2.2148 | 2000 | 0.0013 |
| 2.7685 | 2500 | 0.0008 |
| 3.0 | 2709 | - |
| 3.3223 | 3000 | 0.0007 |
| 3.8760 | 3500 | 0.0005 |
| 4.0 | 3612 | - |
| 4.4297 | 4000 | 0.0003 |
| 4.9834 | 4500 | 0.0004 |
| 5.0 | 4515 | - |
| 5.5371 | 5000 | 0.0002 |
| 6.0 | 5418 | - |
| 6.0908 | 5500 | 0.0002 |
| 6.6445 | 6000 | 0.0002 |
| 7.0 | 6321 | - |
| 7.1982 | 6500 | 0.0001 |
| 7.7519 | 7000 | 0.0001 |
| 8.0 | 7224 | - |
| 8.3056 | 7500 | 0.0001 |
| 8.8594 | 8000 | 0.0001 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.3.1
- Transformers: 4.46.2
- PyTorch: 2.0.1+cu118
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
ContrastiveLoss
@inproceedings{hadsell2006dimensionality,
author={Hadsell, R. and Chopra, S. and LeCun, Y.},
booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
title={Dimensionality Reduction by Learning an Invariant Mapping},
year={2006},
volume={2},
number={},
pages={1735-1742},
doi={10.1109/CVPR.2006.100}
}
- Downloads last month
- 2