| tags: | |
| - deep-reinforcement-learning | |
| - reinforcement-learning | |
| - stable-baselines3 | |
| # ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4 | |
| This is a pre-trained model of a PPO agent playing SpaceInvadersNoFrameskip using the [stable-baselines3](https://github.com/DLR-RM/stable-baselines3) library. It is taken from [RL-trained-agents](https://github.com/DLR-RM/rl-trained-agents) | |
| ### Usage (with Stable-baselines3) | |
| Using this model becomes easy when you have stable-baselines3 and huggingface_sb3 installed: | |
| ``` | |
| pip install stable-baselines3 | |
| pip install huggingface_sb3 | |
| ``` | |
| Then, you can use the model like this: | |
| ```python | |
| import gym | |
| from huggingface_sb3 import load_from_hub | |
| from stable_baselines3 import PPO | |
| from stable_baselines3.common.evaluation import evaluate_policy | |
| from stable_baselines3.common.env_util import make_atari_env | |
| from stable_baselines3.common.vec_env import VecFrameStack | |
| # Retrieve the model from the hub | |
| ## repo_id = id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}) | |
| ## filename = name of the model zip file from the repository | |
| checkpoint = load_from_hub(repo_id="ThomasSimonini/ppo-SpaceInvadersNoFrameskip-v4", filename="ppo-SpaceInvadersNoFrameskip-v4.zip") | |
| model = PPO.load(checkpoint) | |
| ``` | |
| ### Evaluation Results | |
| Mean_reward: 627.160 (162 eval episodes) | |