 
    
A cutting-edge foundation for your very own LLM.
💻Github • 🌐 TigerBot • 🤗 Hugging Face
快速开始
- 方法1,通过transformers使用 - 下载 TigerBot Repo - git clone https://github.com/TigerResearch/TigerBot.git
- 启动infer代码 - python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base
 
- 方法2: - 下载 TigerBot Repo - git clone https://github.com/TigerResearch/TigerBot.git
- 安装git lfs: - git lfs install
- 通过huggingface或modelscope平台下载权重 - git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1 git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git
- 启动infer代码 - python infer.py --model_path tigerbot-70b-base-v1 --model_type base
 
Quick Start
- Method 1, use through transformers - Clone TigerBot Repo - git clone https://github.com/TigerResearch/TigerBot.git
- Run infer script - python infer.py --model_path TigerResearch/tigerbot-70b-base-v1 --model_type base
 
- Method 2: - Clone TigerBot Repo - git clone https://github.com/TigerResearch/TigerBot.git
- install git lfs: - git lfs install
- Download weights from huggingface or modelscope - git clone https://huggingface.co/TigerResearch/tigerbot-70b-base-v1 git clone https://www.modelscope.cn/TigerResearch/tigerbot-70b-base-v1.git
- Run infer script - python infer.py --model_path tigerbot-70b-base-v1 --model_type base
 
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
| Metric | Value | 
|---|---|
| Avg. | 62.1 | 
| ARC (25-shot) | 62.46 | 
| HellaSwag (10-shot) | 83.61 | 
| MMLU (5-shot) | 65.49 | 
| TruthfulQA (0-shot) | 52.76 | 
| Winogrande (5-shot) | 80.19 | 
| GSM8K (5-shot) | 37.76 | 
| DROP (3-shot) | 52.45 | 
- Downloads last month
- -
