SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the ๐Ÿค— Hub
model = SentenceTransformer("Tombiczek/all-MiniLM-L6-v2_fine-tuned-cosqa")
# Run inference
sentences = [
    'python qpushbutton resize in grid layout',
    'def resize(self, width, height):\n        """\n        Pyqt specific resize callback.\n        """\n        if not self.fbo:\n            return\n\n        # pyqt reports sizes in actual buffer size\n        self.width = width // self.widget.devicePixelRatio()\n        self.height = height // self.widget.devicePixelRatio()\n        self.buffer_width = width\n        self.buffer_height = height\n\n        super().resize(width, height)',
    'def __delitem__(self, resource):\n        """Remove resource instance from internal cache"""\n        self.__caches[type(resource)].pop(resource.get_cache_internal_key(), None)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.5830, 0.0179],
#         [0.5830, 1.0000, 0.1409],
#         [0.0179, 0.1409, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.802
cosine_accuracy@3 0.964
cosine_accuracy@5 0.992
cosine_accuracy@10 0.998
cosine_precision@10 0.0998
cosine_recall@10 0.998
cosine_ndcg@10 0.9137
cosine_mrr@10 0.8851
cosine_map@100 0.8852

Training Details

Training Dataset

Unnamed Dataset

  • Size: 9,008 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 6 tokens
    • mean: 9.61 tokens
    • max: 23 tokens
    • min: 38 tokens
    • mean: 87.19 tokens
    • max: 256 tokens
  • Samples:
    sentence_0 sentence_1
    python save ndarray to json def deserialize_ndarray_npy(d):
    """
    Deserializes a JSONified :obj:numpy.ndarray that was created using numpy's
    :obj:save function.

    Args:
    d (:obj:dict): A dictionary representation of an :obj:ndarray object, created
    using :obj:numpy.save.

    Returns:
    An :obj:ndarray object.
    """
    with io.BytesIO() as f:
    f.write(json.loads(d['npy']).encode('latin-1'))
    f.seek(0)
    return np.load(f)
    python delay between loop def seconds(num):
    """
    Pause for this many seconds
    """
    now = pytime.time()
    end = now + num
    until(end)
    python how to read a text file to dict def read_dict_from_file(file_path):
    """
    Read a dictionary of strings from a file
    """
    with open(file_path) as file:
    lines = file.read().splitlines()

    obj = {}
    for line in lines:
    key, value = line.split(':', maxsplit=1)
    obj[key] = eval(value)

    return obj
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 10
  • fp16: True
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 10
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss cosqa-valid_cosine_ndcg@10
0.8881 500 0.0925 -
1.0 563 - 0.8889
1.7762 1000 0.0536 -
2.0 1126 - 0.8955
2.6643 1500 0.0419 -
3.0 1689 - 0.8999
3.5524 2000 0.0365 -
4.0 2252 - 0.9087
4.4405 2500 0.0308 -
5.0 2815 - 0.9060
5.3286 3000 0.0283 -
6.0 3378 - 0.9085
6.2167 3500 0.0263 -
7.0 3941 - 0.9116
7.1048 4000 0.0227 -
7.9929 4500 0.0234 -
8.0 4504 - 0.9119
8.8810 5000 0.0214 -
9.0 5067 - 0.9066
9.7691 5500 0.0216 -
10.0 5630 - 0.9137

Framework Versions

  • Python: 3.10.18
  • Sentence Transformers: 5.1.2
  • Transformers: 4.57.1
  • PyTorch: 2.9.0
  • Accelerate: 1.11.0
  • Datasets: 4.3.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
8
Safetensors
Model size
22.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for Tombiczek/all-MiniLM-L6-v2_fine-tuned-cosqa

Finetuned
(676)
this model

Evaluation results