SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("Tombiczek/all-MiniLM-L6-v2_fine-tuned-cosqa")
# Run inference
sentences = [
'python qpushbutton resize in grid layout',
'def resize(self, width, height):\n """\n Pyqt specific resize callback.\n """\n if not self.fbo:\n return\n\n # pyqt reports sizes in actual buffer size\n self.width = width // self.widget.devicePixelRatio()\n self.height = height // self.widget.devicePixelRatio()\n self.buffer_width = width\n self.buffer_height = height\n\n super().resize(width, height)',
'def __delitem__(self, resource):\n """Remove resource instance from internal cache"""\n self.__caches[type(resource)].pop(resource.get_cache_internal_key(), None)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.5830, 0.0179],
# [0.5830, 1.0000, 0.1409],
# [0.0179, 0.1409, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
cosqa-valid - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.802 |
| cosine_accuracy@3 | 0.964 |
| cosine_accuracy@5 | 0.992 |
| cosine_accuracy@10 | 0.998 |
| cosine_precision@10 | 0.0998 |
| cosine_recall@10 | 0.998 |
| cosine_ndcg@10 | 0.9137 |
| cosine_mrr@10 | 0.8851 |
| cosine_map@100 | 0.8852 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 9,008 training samples
- Columns:
sentence_0andsentence_1 - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 6 tokens
- mean: 9.61 tokens
- max: 23 tokens
- min: 38 tokens
- mean: 87.19 tokens
- max: 256 tokens
- Samples:
sentence_0 sentence_1 python save ndarray to jsondef deserialize_ndarray_npy(d):
"""
Deserializes a JSONified :obj:numpy.ndarraythat was created using numpy's
:obj:savefunction.
Args:
d (:obj:dict): A dictionary representation of an :obj:ndarrayobject, created
using :obj:numpy.save.
Returns:
An :obj:ndarrayobject.
"""
with io.BytesIO() as f:
f.write(json.loads(d['npy']).encode('latin-1'))
f.seek(0)
return np.load(f)python delay between loopdef seconds(num):
"""
Pause for this many seconds
"""
now = pytime.time()
end = now + num
until(end)python how to read a text file to dictdef read_dict_from_file(file_path):
"""
Read a dictionary of strings from a file
"""
with open(file_path) as file:
lines = file.read().splitlines()
obj = {}
for line in lines:
key, value = line.split(':', maxsplit=1)
obj[key] = eval(value)
return obj - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim", "gather_across_devices": false }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 10fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 10max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | cosqa-valid_cosine_ndcg@10 |
|---|---|---|---|
| 0.8881 | 500 | 0.0925 | - |
| 1.0 | 563 | - | 0.8889 |
| 1.7762 | 1000 | 0.0536 | - |
| 2.0 | 1126 | - | 0.8955 |
| 2.6643 | 1500 | 0.0419 | - |
| 3.0 | 1689 | - | 0.8999 |
| 3.5524 | 2000 | 0.0365 | - |
| 4.0 | 2252 | - | 0.9087 |
| 4.4405 | 2500 | 0.0308 | - |
| 5.0 | 2815 | - | 0.9060 |
| 5.3286 | 3000 | 0.0283 | - |
| 6.0 | 3378 | - | 0.9085 |
| 6.2167 | 3500 | 0.0263 | - |
| 7.0 | 3941 | - | 0.9116 |
| 7.1048 | 4000 | 0.0227 | - |
| 7.9929 | 4500 | 0.0234 | - |
| 8.0 | 4504 | - | 0.9119 |
| 8.8810 | 5000 | 0.0214 | - |
| 9.0 | 5067 | - | 0.9066 |
| 9.7691 | 5500 | 0.0216 | - |
| 10.0 | 5630 | - | 0.9137 |
Framework Versions
- Python: 3.10.18
- Sentence Transformers: 5.1.2
- Transformers: 4.57.1
- PyTorch: 2.9.0
- Accelerate: 1.11.0
- Datasets: 4.3.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Model tree for Tombiczek/all-MiniLM-L6-v2_fine-tuned-cosqa
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy@1 on cosqa validself-reported0.802
- Cosine Accuracy@3 on cosqa validself-reported0.964
- Cosine Accuracy@5 on cosqa validself-reported0.992
- Cosine Accuracy@10 on cosqa validself-reported0.998
- Cosine Precision@10 on cosqa validself-reported0.100
- Cosine Recall@10 on cosqa validself-reported0.998
- Cosine Ndcg@10 on cosqa validself-reported0.914
- Cosine Mrr@10 on cosqa validself-reported0.885
- Cosine Map@100 on cosqa validself-reported0.885