library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/UbiquantAI/Fleming-R1-32B/blob/main/LICENSE
pipeline_tag: text-generation
Fleming-VL-8B
GitHub β’ π Paper
Highlights
π Model Overview
Fleming-VL is a multimodal reasoning model for medical scenarios that can process and analyze various types of medical data including 2D images, 3D volumetric data, and video sequences. The model performs step-by-step analysis of complex multimodal medical problems and produces reliable answers. Building upon the GRPO reasoning paradigm, Fleming-VL extends the capabilities to handle diverse medical imaging modalities while maintaining strong reasoning performance.
Model Features:
- Multimodal Processing Supports various medical data types including 2D images (X-rays, pathology slides), 3D volumes (CT/MRI scans), and videos (ultrasound, endoscopy, surgical recordings);
- Medical Reasoning Performs step-by-step chain-of-thought reasoning to analyze complex medical problems, combining visual information with medical knowledge to provide reliable diagnostic insights.
π¦ Releases
- Fleming-VL-7B ββ Trained on InternVL3-8B
π€UbiquantAI/Fleming-VL-8B - Fleming-VL-38B ββ Trained on InternVL3-38B
π€UbiquantAI/Fleming-VL-8B
π Performance
Main Benchmark Results
π§ Quick Start
"""
Fleming-VL-8B Multi-Modal Inference Script
This script demonstrates three inference modes:
1. Single image inference
2. Video inference (frame-by-frame)
3. 3D medical image (CT/MRI) inference from .npy files
Model: UbiquantAI/Fleming-VL-8B
Based on: InternVL_chat-1.2 template
"""
from transformers import AutoTokenizer, AutoModel, CLIPImageProcessor
from decord import VideoReader, cpu
from PIL import Image
import numpy as np
import shutil
import torch
import os
# ============================================================================
# Configuration
# ============================================================================
MODEL_PATH = "UbiquantAI/Fleming-VL-8B"
REQUIRED_FILES_DIR = './required_files'
# Prompt template for reasoning-based responses
REASONING_PROMPT = (
"A conversation between User and Assistant. The user asks a question, "
"and the Assistant solves it. The assistant first thinks about the "
"reasoning process in the mind and then provides the user a concise "
"final answer in a short word or phrase. The reasoning process and "
"answer are enclosed within <think> </think> and <answer> </answer> "
"tags, respectively, i.e., <think> reasoning process here </think>"
"<answer> answer here </answer>"
)
# ============================================================================
# Utility Functions
# ============================================================================
def copy_necessary_files(target_path, source_path):
"""
Copy required model configuration files to the model directory.
Args:
target_path: Destination directory (model path)
source_path: Source directory containing required files
"""
required_files = [
"modeling_internvl_chat.py",
"conversation.py",
"modeling_intern_vit.py",
"preprocessor_config.json",
"configuration_internvl_chat.py",
"configuration_intern_vit.py",
]
for filename in required_files:
target_file = os.path.join(target_path, filename)
source_file = os.path.join(source_path, filename)
if not os.path.exists(target_file):
print(f"File {filename} not found in target path, copying from source...")
if os.path.exists(source_file):
try:
shutil.copy2(source_file, target_file)
print(f"Successfully copied {filename}")
except Exception as e:
print(f"Error copying {filename}: {str(e)}")
else:
print(f"Warning: Source file {filename} does not exist, cannot copy")
else:
print(f"File {filename} already exists")
def load_model(model_path, use_flash_attn=True):
"""
Load the vision-language model and tokenizer.
Args:
model_path: Path to the pretrained model
use_flash_attn: Whether to use flash attention (default: True)
Returns:
tuple: (model, tokenizer)
"""
model = AutoModel.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
use_flash_attn=use_flash_attn,
trust_remote_code=True
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code=True,
use_fast=False
)
return model, tokenizer
# ============================================================================
# Image Inference
# ============================================================================
def inference_single_image(model, tokenizer, image_path, question, prompt=REASONING_PROMPT):
"""
Perform inference on a single image.
Args:
model: Loaded vision-language model
tokenizer: Loaded tokenizer
image_path: Path to the input image
question: Question to ask about the image
prompt: System prompt template
Returns:
str: Model response
"""
# Load and preprocess image
image_processor = CLIPImageProcessor.from_pretrained(MODEL_PATH)
image = Image.open(image_path).resize((448, 448))
pixel_values = image_processor(
images=image,
return_tensors='pt'
).pixel_values.to(torch.bfloat16).cuda()
# Prepare question with prompt and image token
full_question = f"{prompt}\n<image>\n{question}"
# Generate response
generation_config = dict(max_new_tokens=1024, do_sample=False)
response = model.chat(tokenizer, pixel_values, full_question, generation_config)
return response
# ============================================================================
# Video Inference
# ============================================================================
def get_frame_indices(bound, fps, max_frame, first_idx=0, num_segments=32):
"""
Calculate evenly distributed frame indices for video sampling.
Args:
bound: Tuple of (start_time, end_time) in seconds, or None for full video
fps: Frames per second of the video
max_frame: Maximum frame index
first_idx: First frame index to consider
num_segments: Number of frames to sample
Returns:
np.array: Array of frame indices
"""
if bound:
start, end = bound[0], bound[1]
else:
start, end = -100000, 100000
start_idx = max(first_idx, round(start * fps))
end_idx = min(round(end * fps), max_frame)
seg_size = float(end_idx - start_idx) / num_segments
frame_indices = np.array([
int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
for idx in range(num_segments)
])
return frame_indices
def load_video(video_path, model_path, bound=None, num_segments=32):
"""
Load and preprocess video frames.
Args:
video_path: Path to the video file
model_path: Path to the model (for image processor)
bound: Time boundary tuple (start, end) in seconds
num_segments: Number of frames to extract
Returns:
tuple: (pixel_values tensor, list of num_patches per frame)
"""
vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
max_frame = len(vr) - 1
fps = float(vr.get_avg_fps())
pixel_values_list = []
num_patches_list = []
image_processor = CLIPImageProcessor.from_pretrained(model_path)
frame_indices = get_frame_indices(bound, fps, max_frame, first_idx=0, num_segments=num_segments)
for frame_index in frame_indices:
# Extract and preprocess frame
img = Image.fromarray(vr[frame_index].asnumpy()).convert('RGB').resize((448, 448))
pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
def inference_video(model, tokenizer, video_path, video_duration, question, prompt=REASONING_PROMPT):
"""
Perform inference on a video by sampling frames.
Args:
model: Loaded vision-language model
tokenizer: Loaded tokenizer
video_path: Path to the video file
video_duration: Duration of video in seconds
question: Question to ask about the video
prompt: System prompt template
Returns:
str: Model response
"""
# Sample frames from video (1 frame per second)
num_segments = int(video_duration)
pixel_values, num_patches_list = load_video(video_path, MODEL_PATH, num_segments=num_segments)
pixel_values = pixel_values.to(torch.bfloat16).cuda()
# Create image token prefix for all frames
video_prefix = ''.join([f'<image>\n' for _ in range(len(num_patches_list))])
# Prepare question with prompt and image tokens
full_question = f"{prompt}\n{video_prefix}{question}"
# Generate response
generation_config = dict(max_new_tokens=1024, do_sample=False)
response, history = model.chat(
tokenizer,
pixel_values,
full_question,
generation_config,
num_patches_list=num_patches_list,
history=None,
return_history=True
)
return response
# ============================================================================
# 3D Medical Image (NPY) Inference
# ============================================================================
def normalize_image(image):
"""
Normalize image array to 0-255 range.
Args:
image: NumPy array of image data
Returns:
np.array: Normalized image as uint8
"""
img_min = np.min(image)
img_max = np.max(image)
if img_max - img_min == 0:
return np.zeros_like(image, dtype=np.uint8)
return ((image - img_min) / (img_max - img_min) * 255).astype(np.uint8)
def convert_npy_to_images(npy_path, model_path, num_slices=11):
"""
Convert 3D medical image (.npy) to multiple 2D RGB images.
Expected input shape: (32, 256, 256) or (1, 32, 256, 256)
Extracts evenly distributed slices and converts to RGB format.
Args:
npy_path: Path to the .npy file
model_path: Path to the model (for image processor)
num_slices: Number of slices to extract (default: 11)
Returns:
tuple: (pixel_values tensor, list of num_patches per slice) or False if error
"""
try:
# Load .npy file
data = np.load(npy_path)
# Handle shape (1, 32, 256, 256) -> (32, 256, 256)
if data.ndim == 4 and data.shape[0] == 1:
data = data[0]
# Validate shape
if data.shape != (32, 256, 256):
print(f"Warning: {npy_path} has shape {data.shape}, expected (32, 256, 256), skipping")
return False
# Select evenly distributed slices from 32 slices
indices = np.linspace(0, 31, num_slices, dtype=int)
image_processor = CLIPImageProcessor.from_pretrained(model_path)
pixel_values_list = []
num_patches_list = []
# Process each selected slice
for idx in indices:
# Get slice
slice_img = data[idx]
# Normalize to 0-255
normalized = normalize_image(slice_img)
# Convert grayscale to RGB by stacking
rgb_img = np.stack([normalized, normalized, normalized], axis=-1)
# Convert to PIL Image
img = Image.fromarray(rgb_img)
# Preprocess with CLIP processor
pixel_values = image_processor(images=img, return_tensors='pt').pixel_values
num_patches_list.append(pixel_values.shape[0])
pixel_values_list.append(pixel_values)
pixel_values = torch.cat(pixel_values_list)
return pixel_values, num_patches_list
except Exception as e:
print(f"Error processing {npy_path}: {str(e)}")
return False
def inference_3d_medical_image(model, tokenizer, npy_path, question, prompt=REASONING_PROMPT):
"""
Perform inference on 3D medical images stored as .npy files.
Args:
model: Loaded vision-language model
tokenizer: Loaded tokenizer
npy_path: Path to the .npy file (shape: 32x256x256)
question: Question to ask about the image
prompt: System prompt template
Returns:
str: Model response or None if error
"""
# Convert 3D volume to multiple 2D slices
result = convert_npy_to_images(npy_path, MODEL_PATH)
if result is False:
return None
pixel_values, num_patches_list = result
pixel_values = pixel_values.to(torch.bfloat16).cuda()
# Create image token prefix for all slices
image_prefix = ''.join([f'<image>\n' for _ in range(len(num_patches_list))])
# Prepare question with prompt and image tokens
full_question = f"{prompt}\n{image_prefix}{question}"
# Generate response
generation_config = dict(max_new_tokens=1024, do_sample=False)
response, history = model.chat(
tokenizer,
pixel_values,
full_question,
generation_config,
num_patches_list=num_patches_list,
history=None,
return_history=True
)
return response
# ============================================================================
# Main Execution Examples
# ============================================================================
def main():
"""
Main function demonstrating all three inference modes.
"""
# Copy necessary files
copy_necessary_files(MODEL_PATH, REQUIRED_FILES_DIR)
# ========================================================================
# Example 1: Single Image Inference
# ========================================================================
print("\n" + "="*80)
print("EXAMPLE 1: Single Image Inference")
print("="*80)
image_path = "./test.png"
question = (
"What imaging technique was employed to obtain this picture?\n"
"A. PET scan. B. CT scan. C. Blood test. D. Fundus imaging."
)
model, tokenizer = load_model(MODEL_PATH, use_flash_attn=True)
response = inference_single_image(model, tokenizer, image_path, question)
print(f"\nUser: {question}")
print(f"Assistant: {response}")
# Clean up GPU memory
del model, tokenizer
torch.cuda.empty_cache()
# ========================================================================
# Example 2: Video Inference
# ========================================================================
print("\n" + "="*80)
print("EXAMPLE 2: Video Inference")
print("="*80)
video_path = "./test.mp4"
video_duration = 6 # seconds
question = "Please describe the video."
model, tokenizer = load_model(MODEL_PATH, use_flash_attn=False)
response = inference_video(model, tokenizer, video_path, video_duration, question)
print(f"\nUser: {question}")
print(f"Assistant: {response}")
# Clean up GPU memory
del model, tokenizer
torch.cuda.empty_cache()
# ========================================================================
# Example 3: 3D Medical Image Inference
# ========================================================================
print("\n" + "="*80)
print("EXAMPLE 3: 3D Medical Image Inference")
print("="*80)
npy_path = "./test.npy"
question = "What device is observed on the chest wall?"
# Example cases:
# Case 1: /path/to/test_1016_d_2.npy
# Question: "Where is the largest lymph node observed?"
# Answer: "Right hilar region."
#
# Case 2: /path/to/test_1031_a_2.npy
# Question: "What device is observed on the chest wall?"
# Answer: "Pacemaker."
model, tokenizer = load_model(MODEL_PATH, use_flash_attn=False)
response = inference_3d_medical_image(model, tokenizer, npy_path, question)
if response:
print(f"\nUser: {question}")
print(f"Assistant: {response}")
else:
print("\nError: Failed to process 3D medical image")
# Clean up GPU memory
del model, tokenizer
torch.cuda.empty_cache()
if __name__ == "__main__":
main()
β οΈ Safety Statement
This project is for research and non-clinical reference only; it must not be used for actual diagnosis or treatment decisions.
The generated reasoning traces are an auditable intermediate process and do not constitute medical advice.
In medical scenarios, results must be reviewed and approved by qualified professionals, and all applicable laws, regulations, and privacy compliance requirements in your region must be followed.
π Citation
@misc{flemingr1,
title={Fleming-R1: Toward Expert-Level Medical Reasoning via Reinforcement Learning},
author={Chi Liu and Derek Li and Yan Shu and Robin Chen and Derek Duan and Teng Fang and Bryan Dai},
year={2025},
eprint={2509.15279},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2509.15279},
}