DeBERTa-finetuned-ner-S800
This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0606
 - Precision: 0.6730
 - Recall: 0.7899
 - F1: 0.7268
 - Accuracy: 0.9783
 
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
 - train_batch_size: 8
 - eval_batch_size: 8
 - seed: 42
 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
 - lr_scheduler_type: linear
 - num_epochs: 5
 
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | 
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 55 | 0.0744 | 0.5840 | 0.6527 | 0.6164 | 0.9703 | 
| No log | 2.0 | 110 | 0.0639 | 0.6332 | 0.7689 | 0.6945 | 0.9764 | 
| No log | 3.0 | 165 | 0.0585 | 0.6424 | 0.7801 | 0.7046 | 0.9766 | 
| No log | 4.0 | 220 | 0.0581 | 0.6754 | 0.7955 | 0.7305 | 0.9785 | 
| No log | 5.0 | 275 | 0.0606 | 0.6730 | 0.7899 | 0.7268 | 0.9783 | 
Framework versions
- Transformers 4.33.2
 - Pytorch 2.0.1+cu118
 - Datasets 2.14.5
 - Tokenizers 0.13.3
 
- Downloads last month
 - 1
 
Model tree for ViktorDo/DeBERTa-finetuned-ner-S800
Base model
microsoft/deberta-v3-base