classification_model1
This model is a fine-tuned version of cointegrated/rubert-tiny2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.4031
- Accuracy: 0.8801
- Recall Class 0: 0.9548
- Recall Class 1: 0.9176
- Recall Class 2: 0.8182
- Recall Class 3: 0.7531
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall Class 0 | Recall Class 1 | Recall Class 2 | Recall Class 3 |
|---|---|---|---|---|---|---|---|---|
| No log | 1.0 | 221 | 0.7466 | 0.7670 | 0.9887 | 0.9176 | 0.5455 | 0.3951 |
| No log | 2.0 | 442 | 0.5153 | 0.8394 | 0.9774 | 0.9294 | 0.7374 | 0.5679 |
| 0.7869 | 3.0 | 663 | 0.4478 | 0.8462 | 0.9548 | 0.9176 | 0.7980 | 0.5926 |
| 0.7869 | 4.0 | 884 | 0.4165 | 0.8778 | 0.9492 | 0.9176 | 0.8182 | 0.7531 |
| 0.3424 | 5.0 | 1105 | 0.4064 | 0.8756 | 0.9605 | 0.9176 | 0.8182 | 0.7160 |
| 0.3424 | 6.0 | 1326 | 0.3953 | 0.8801 | 0.9548 | 0.9176 | 0.8182 | 0.7531 |
| 0.2291 | 7.0 | 1547 | 0.4016 | 0.8846 | 0.9548 | 0.9294 | 0.8182 | 0.7654 |
| 0.2291 | 8.0 | 1768 | 0.4031 | 0.8801 | 0.9548 | 0.9176 | 0.8182 | 0.7531 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.1.0
- Tokenizers 0.22.0
- Downloads last month
- 1
Model tree for Vixez/classification_model1
Base model
cointegrated/rubert-tiny2