Hulu-Med-14B / modeling_hulumed_qwen3.py
ZJU-AI4H's picture
Upload folder using huggingface_hub
d8e2cf1 verified
raw
history blame
19.7 kB
# Adopted from https://github.com/haotian-liu/LLaVA. Below is the original copyright:
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch HuluMed model."""
import importlib.util
import os.path as osp
import re
from abc import ABC, abstractmethod
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from transformers import (AutoConfig, AutoModelForCausalLM, Qwen3Config,AutoModel,
Qwen3ForCausalLM, Qwen3Model)
from transformers.generation.utils import GenerateOutput
from transformers.modeling_outputs import CausalLMOutputWithPast
CONTROLLER_HEART_BEAT_EXPIRATION = 30
WORKER_HEART_BEAT_INTERVAL = 15
LOGDIR = "."
# Model Constants
IGNORE_INDEX = -100
# Image arguments
IMAGE_TOKEN_INDEX = -200
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
IMAGE_PLACEHOLDER = "<image-placeholder>"
# Video arguments
VIDEO_TOKEN_INDEX = -201
DEFAULT_VIDEO_TOKEN = "<video>"
NUM_FRAMES = 128
MAX_FRAMES = 768
NUM_FRAMES_PER_SECOND = 1
# Audio arguments
AUDIO_TOKEN_INDEX = -202
DEFAULT_AUDIO_TOKEN = "<audio>"
# Stream arguments
STREAM_START_TOKEN = "<|stream_start|>"
STREAM_END_TOKEN = "<|stream_end|>"
STREAM_MAX_FRAMES = 400
MODAL_INDEX_MAP = {
"<image>": -200,
"<video>": -201,
"<audio>": -202,
}
subimage_token_num=196
try:
from .configuration_hulumed_qwen3 import HulumedQwen3Config
except ModuleNotFoundError:
spec = importlib.util.spec_from_file_location(
"configuration_hulumed_qwen3",
osp.join(osp.dirname(__file__), "configuration_hulumed_qwen3.py"),
)
configuration_hulumed_qwen3 = importlib.util.module_from_spec(spec)
spec.loader.exec_module(configuration_hulumed_qwen3)
HulumedQwen3Config = getattr(
configuration_hulumed_qwen3,
"HulumedQwen3Config",
)
def build_mlp(depth, hidden_size, output_hidden_size):
"""Build MLP layers for projection."""
modules = [nn.Linear(hidden_size, output_hidden_size)]
for _ in range(1, depth):
modules.append(nn.GELU())
modules.append(nn.Linear(output_hidden_size, output_hidden_size))
return nn.Sequential(*modules)
def build_vision_projector(config, delay_load=False, **kwargs):
"""Build vision projector based on config."""
projector_type = getattr(config, 'mm_projector_type', 'linear')
if projector_type == "linear":
return nn.Linear(config.vision_encoder_config.hidden_size, config.hidden_size)
elif projector_type.startswith("mlp"):
return MlpGeluProjector(config, projector_type)
else:
raise ValueError(f'Unknown projector type: {projector_type}')
class MlpGeluProjector(nn.Module):
"""MLP projector with GELU activation."""
def __init__(self, config, projector_type):
super().__init__()
mlp_gelu_match = re.match(r"^mlp(\d+)x_gelu$", projector_type)
if mlp_gelu_match is None:
raise ValueError(f"Invalid projector type format: {projector_type}")
mlp_depth = int(mlp_gelu_match.group(1))
self.readout = build_mlp(
mlp_depth,
config.vision_encoder_config.hidden_size,
config.hidden_size
)
def forward(self, x):
return self.readout(x)
class HulumedMetaModel:
"""Meta model for HuluMed that handles vision encoder initialization."""
def __init__(self, config):
super(HulumedMetaModel, self).__init__(config)
print('config.vision_encoder',config.vision_encoder)
if config.vision_encoder is not None:
# Load from pretrained path
print('Load from pretrained path')
self.vision_encoder = AutoModel.from_pretrained(
config.vision_encoder,
attn_implementation=self.config._attn_implementation,
torch_dtype=self.dtype,
)
self.config.vision_encoder_config = self.vision_encoder.config
self.config.vision_encoder = None
elif config.vision_encoder_config is not None:
# Build from config
print('Build from config')
self.vision_encoder = AutoModel.from_config(
self.config.vision_encoder_config,
attn_implementation=self.config._attn_implementation,
torch_dtype=self.dtype,
)
else:
raise ValueError("Vision encoder is not provided in config")
self.mm_projector = build_vision_projector(config)
def get_vision_encoder(self):
return self.vision_encoder
def get_mm_projector(self):
return self.mm_projector
class HulumedQwen3Model(HulumedMetaModel, Qwen3Model):
config_class = HulumedQwen3Config
def __init__(self, config: HulumedQwen3Config):
super(HulumedQwen3Model, self).__init__(config)
class HulumedMetaForCausalLM(ABC):
"""Meta class for HuluMed Causal LM with multimodal support."""
@abstractmethod
def get_model(self):
pass
def get_vision_encoder(self):
return self.get_model().get_vision_encoder()
def get_mm_projector(self):
return self.get_model().get_mm_projector()
def encode_images(
self,
pixel_values: torch.FloatTensor,
grid_sizes: torch.LongTensor,
merge_sizes: torch.LongTensor,
) -> torch.FloatTensor:
"""Encode images using vision encoder and projector."""
mm_features = self.get_model().get_vision_encoder()(
pixel_values=pixel_values,
grid_sizes=grid_sizes,
merge_sizes=merge_sizes,
)
mm_features = self.get_model().mm_projector(mm_features)
return mm_features
def _get_valid_visual_tokens(
self,
mm_features: torch.FloatTensor,
batched_num_patches: torch.LongTensor,
modals: List[str],
):
"""Filter out text-only samples and keep only valid visual tokens."""
valid_masks = []
for num_patches, modal in zip(batched_num_patches, modals):
valid_mask = torch.full(
(num_patches,),
modal != "text",
dtype=torch.bool,
device=mm_features.device
)
valid_masks.append(valid_mask)
mm_features = mm_features[torch.cat(valid_masks)]
return mm_features
def _maybe_truncate_visual_tokens(
self,
mm_features: torch.FloatTensor,
compression_mask: torch.BoolTensor,
batched_num_patches: torch.LongTensor,
modals: List[str],
input_ids: torch.LongTensor,
position_ids: Optional[torch.LongTensor] = None,
):
"""Truncate visual tokens if necessary based on position_ids."""
if position_ids is None or mm_features.shape[0] == input_ids.eq(self.config.image_token_index).sum():
return mm_features, compression_mask
truncation_mask = []
for num_patches, modal in zip(batched_num_patches, modals):
if modal == "text":
truncation_mask.append(torch.ones((0,), dtype=torch.bool, device=input_ids.device))
else:
truncation_mask.append(torch.ones((num_patches,), dtype=torch.bool, device=input_ids.device))
seq_end_indices = torch.nonzero(position_ids == 0)[:, 0]
seq_end_indices = seq_end_indices[seq_end_indices > 0].tolist() + [len(input_ids)]
seq_start_indices = [0] + seq_end_indices[:-1]
num_visual_tokens = [
input_ids[start:end].eq(self.config.image_token_index).sum()
for start, end in zip(seq_start_indices, seq_end_indices)
]
for n, mask in zip(num_visual_tokens, truncation_mask):
if len(mask) > 0:
mask[n:] = False
truncation_mask = torch.cat(truncation_mask)
return mm_features[truncation_mask], compression_mask[truncation_mask]
def _get_compression_mask(
self,
pixel_values: torch.FloatTensor,
batched_num_patches: torch.LongTensor,
grid_sizes: torch.LongTensor,
merge_sizes: torch.LongTensor,
modals: List[str],
threshold: float = 0.1,
min_tokens: int = 1,
) -> torch.BoolTensor:
"""Get compression mask for video tokens based on frame differences."""
batched_images = pixel_values.split(grid_sizes.prod(dim=1).tolist(), dim=0)
compression_masks = []
for images, num_patches, grid_size, merge_size, modal in zip(
batched_images, batched_num_patches, grid_sizes, merge_sizes, modals
):
t, h, w = grid_size
if modal == "image" or (modal == "video" and t == 1):
compression_masks.append(torch.ones((num_patches,), dtype=torch.bool, device=images.device))
elif modal == "video":
# Video token compression based on pixel differences
images = images.view(t, (h // merge_size) * (w // merge_size), -1)
pixel_diff = images[1:] - images[:-1]
pixel_diff = torch.abs(pixel_diff).mean(dim=-1) * 255
pixel_diff = torch.cat([torch.full_like(pixel_diff[0:1], threshold + 1), pixel_diff], dim=0)
mask = (pixel_diff / 255.0) > threshold
padding_ids = torch.nonzero(mask.sum(dim=1) < min_tokens)[:, 0]
mask[padding_ids, :min_tokens] = 1
compression_masks.append(mask.flatten())
else:
# Pseudo image case
compression_masks.append(torch.ones((0,), dtype=torch.bool, device=images.device))
return torch.cat(compression_masks)
def _compress_visual_tokens(
self,
compression_mask: torch.BoolTensor,
mm_features: torch.FloatTensor,
input_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
):
"""Compress visual tokens based on compression mask."""
mm_features = mm_features[compression_mask]
image_selected = (input_ids == self.config.image_token_index)
text_masks = torch.logical_not(image_selected)
text_masks[image_selected] = compression_mask
input_ids = input_ids[text_masks]
if attention_mask is not None:
attention_mask = attention_mask[text_masks]
if labels is not None:
labels = labels[text_masks]
if position_ids is not None:
position_ids = position_ids[text_masks]
pos_start = [0] + torch.nonzero(position_ids == 0)[:, 0].tolist()
pos_end = pos_start[1:] + [len(input_ids)]
position_ids = torch.cat([
torch.arange(end - start, device=input_ids.device)
for start, end in zip(pos_start, pos_end)
])
return mm_features, input_ids, attention_mask, position_ids, labels
def prepare_inputs_labels_for_multimodal(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
labels: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
grid_sizes: Optional[torch.LongTensor] = None,
merge_sizes: Optional[torch.LongTensor] = None,
modals: Optional[List[str]] = None,
):
"""Prepare inputs and labels for multimodal training/inference."""
vision_encoder = self.get_vision_encoder()
# Text-only situation
if vision_encoder is None or pixel_values is None or input_ids.shape[1] == 1:
return input_ids, attention_mask, position_ids, past_key_values, None, labels
# 1. Flatten text inputs
B, N = input_ids.shape
input_ids = input_ids.view(B * N)
if attention_mask is not None:
attention_mask = attention_mask.view(B * N)
if position_ids is not None:
position_ids = position_ids.view(B * N)
if labels is not None:
labels = labels.view(B * N)
# 2. Embed visual tokens
batched_num_patches = grid_sizes.prod(dim=1).div(merge_sizes ** 2).long()
mm_features = self.encode_images(pixel_values, grid_sizes, merge_sizes).to(input_ids.device)
mm_features = self._get_valid_visual_tokens(mm_features, batched_num_patches, modals)
compression_mask = self._get_compression_mask(
pixel_values, batched_num_patches, grid_sizes, merge_sizes, modals
)
mm_features, compression_mask = self._maybe_truncate_visual_tokens(
mm_features, compression_mask, batched_num_patches, modals, input_ids, position_ids
)
# 3. Compress visual tokens if enabled
if self.config.use_token_compression:
assert B == 1, "Token compression is only supported for batch_size=1"
mm_features, input_ids, attention_mask, position_ids, labels = self._compress_visual_tokens(
compression_mask, mm_features, input_ids, attention_mask, position_ids, labels
)
# 4. Embed text tokens
inputs_embeds = self.get_model().embed_tokens(input_ids).clone()
# 5. Replace multimodal tokens with features
image_selected = (input_ids == self.config.image_token_index)
inputs_embeds[image_selected] = inputs_embeds[image_selected] * 0.0 + mm_features
# 6. Reshape back to batched format
C = inputs_embeds.shape[-1]
inputs_embeds = inputs_embeds.reshape(B, -1, C)
if attention_mask is not None:
attention_mask = attention_mask.view(B, -1)
if labels is not None:
labels = labels.view(B, -1)
if position_ids is not None:
position_ids = position_ids.view(B, -1)
return None, attention_mask, position_ids, past_key_values, inputs_embeds, labels
class HulumedQwen3ForCausalLM(Qwen3ForCausalLM, HulumedMetaForCausalLM):
config_class = HulumedQwen3Config
def __init__(self, config, **kwargs):
super(Qwen3ForCausalLM, self).__init__(config)
self.model = HulumedQwen3Model(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
num_logits_to_keep: int = 0,
# Multimodal inputs
pixel_values: Optional[torch.FloatTensor] = None,
grid_sizes: Optional[torch.LongTensor] = None,
merge_sizes: Optional[torch.LongTensor] = None,
modals: Optional[List[str]] = None,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""Forward pass with multimodal support."""
if inputs_embeds is None:
(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
) = self.prepare_inputs_labels_for_multimodal(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=labels,
pixel_values=pixel_values,
grid_sizes=grid_sizes,
merge_sizes=merge_sizes,
modals=modals,
)
return super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
num_logits_to_keep=num_logits_to_keep,
**loss_kwargs,
)
@torch.no_grad()
def generate(
self,
# Multimodal inputs
pixel_values: Optional[torch.FloatTensor] = None,
grid_sizes: Optional[torch.LongTensor] = None,
merge_sizes: Optional[torch.LongTensor] = None,
modals: Optional[List[str]] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
"""Generate with multimodal support."""
input_ids = kwargs.pop("input_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
position_ids = kwargs.pop("position_ids", None)
past_key_values = kwargs.pop("past_key_values", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
if pixel_values is not None:
(
input_ids,
attention_mask,
position_ids,
past_key_values,
inputs_embeds,
labels,
) = self.prepare_inputs_labels_for_multimodal(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
labels=None,
pixel_values=pixel_values,
grid_sizes=grid_sizes,
merge_sizes=merge_sizes,
modals=modals,
)
else:
inputs_embeds = self.get_model().embed_tokens(input_ids)
return super().generate(
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
**kwargs
)
def prepare_inputs_for_generation(
self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs
):
"""Prepare inputs for generation."""
images = kwargs.pop("images", None)
_inputs = super().prepare_inputs_for_generation(
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
)
if images is not None:
_inputs['images'] = images
return _inputs