|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """Image processor class for HuluMed.""" | 
					
						
						|  |  | 
					
						
						|  | import math | 
					
						
						|  | from typing import Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | from transformers.image_processing_utils import BaseImageProcessor, BatchFeature | 
					
						
						|  | from transformers.image_utils import ImageInput | 
					
						
						|  | from transformers.image_transforms import ( | 
					
						
						|  | convert_to_rgb, | 
					
						
						|  | resize, | 
					
						
						|  | to_channel_dimension_format, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.image_utils import ( | 
					
						
						|  | OPENAI_CLIP_MEAN, | 
					
						
						|  | OPENAI_CLIP_STD, | 
					
						
						|  | ChannelDimension, | 
					
						
						|  | ImageInput, | 
					
						
						|  | PILImageResampling, | 
					
						
						|  | VideoInput, | 
					
						
						|  | get_image_size, | 
					
						
						|  | infer_channel_dimension_format, | 
					
						
						|  | is_scaled_image, | 
					
						
						|  | is_valid_image, | 
					
						
						|  | make_list_of_images, | 
					
						
						|  | to_numpy_array, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils import TensorType, is_vision_available, logging | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_vision_available(): | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_valid_video(video) -> bool: | 
					
						
						|  | if isinstance(video, (list, tuple)): | 
					
						
						|  | return all(is_valid_image(frame) for frame in video) | 
					
						
						|  | elif isinstance(video, np.ndarray): | 
					
						
						|  | return video.ndim == 4 | 
					
						
						|  | elif isinstance(video, torch.Tensor): | 
					
						
						|  | return video.ndim == 4 | 
					
						
						|  | return False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def make_batched_images(images) -> List[List[ImageInput]]: | 
					
						
						|  | """ | 
					
						
						|  | Accepts images in list or nested list format, and makes a list of images for preprocessing. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | images (`Union[List[List[ImageInput]], List[ImageInput], ImageInput]`): | 
					
						
						|  | The input image. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | list: A list of images. | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(images, (list, tuple)): | 
					
						
						|  |  | 
					
						
						|  | if not all(is_valid_video(image) or is_valid_image(image) for image in images): | 
					
						
						|  | raise ValueError(f"Could not make batched images from {images}") | 
					
						
						|  | return images | 
					
						
						|  | elif is_valid_video(images) or is_valid_image(images): | 
					
						
						|  |  | 
					
						
						|  | return [images] | 
					
						
						|  |  | 
					
						
						|  | raise ValueError(f"Could not make batched images from {images}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def simple_batched_resize( | 
					
						
						|  | images, factor: int = 28, min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None | 
					
						
						|  | ): | 
					
						
						|  | min_pixels = min_tokens * factor * factor | 
					
						
						|  | max_pixels = max_tokens * factor * factor | 
					
						
						|  |  | 
					
						
						|  | num_images = 0 | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_valid_video(image): | 
					
						
						|  | num_images += len(image) | 
					
						
						|  | else: | 
					
						
						|  | num_images += 1 | 
					
						
						|  |  | 
					
						
						|  | image_sizes = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_valid_video(image): | 
					
						
						|  | image = image[0] | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | height, width = image.size | 
					
						
						|  | else: | 
					
						
						|  | height, width = get_image_size(image, channel_dim=input_data_format) | 
					
						
						|  | image_sizes.append([height, width]) | 
					
						
						|  |  | 
					
						
						|  | tmp_image_sizes = [] | 
					
						
						|  | for height, width in image_sizes: | 
					
						
						|  | h_bar = round(height / factor) * factor | 
					
						
						|  | w_bar = round(width / factor) * factor | 
					
						
						|  | if h_bar * w_bar > (max_pixels // num_images): | 
					
						
						|  | beta = math.sqrt((height * width) / (max_pixels // num_images)) | 
					
						
						|  | h_bar = math.floor(height / beta / factor) * factor | 
					
						
						|  | w_bar = math.floor(width / beta / factor) * factor | 
					
						
						|  |  | 
					
						
						|  | if h_bar * w_bar < min_pixels: | 
					
						
						|  | beta = math.sqrt(min_pixels / (height * width)) | 
					
						
						|  | h_bar = math.ceil(height * beta / factor) * factor | 
					
						
						|  | w_bar = math.ceil(width * beta / factor) * factor | 
					
						
						|  | tmp_image_sizes.append((h_bar, w_bar)) | 
					
						
						|  | image_sizes = tmp_image_sizes | 
					
						
						|  | return image_sizes | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def batched_resize( | 
					
						
						|  | images, factors: List[int], min_tokens: int = 4 * 4, max_tokens: int = 16384, input_data_format: str = None | 
					
						
						|  | ): | 
					
						
						|  | image_sizes = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | if is_valid_video(image): | 
					
						
						|  | num_frame = len(image) | 
					
						
						|  | image = image[0] | 
					
						
						|  | else: | 
					
						
						|  | num_frame = 1 | 
					
						
						|  | if isinstance(image, Image.Image): | 
					
						
						|  | height, width = image.size | 
					
						
						|  | else: | 
					
						
						|  | height, width = get_image_size(image, channel_dim=input_data_format) | 
					
						
						|  | image_sizes.append([num_frame, height, width]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | smart_scale_factors = 1.0 | 
					
						
						|  | total_tokens = 0 | 
					
						
						|  | for (num_frame, height, width), factor in zip(image_sizes, factors): | 
					
						
						|  | total_tokens += num_frame * math.ceil(height / factor) * math.ceil(width / factor) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if total_tokens > max_tokens: | 
					
						
						|  | beta = math.sqrt(total_tokens / max_tokens) | 
					
						
						|  | tmp_image_sizes = [] | 
					
						
						|  | for (_, height, width), factor in zip(image_sizes, factors): | 
					
						
						|  | h_bar = math.floor(height / beta / factor) * factor | 
					
						
						|  | w_bar = math.floor(width / beta / factor) * factor | 
					
						
						|  | tmp_image_sizes.append((h_bar, w_bar)) | 
					
						
						|  | image_sizes = tmp_image_sizes | 
					
						
						|  | else: | 
					
						
						|  | tmp_image_sizes = [] | 
					
						
						|  | for (_, height, width), factor in zip(image_sizes, factors): | 
					
						
						|  | height = round(height / factor) * factor | 
					
						
						|  | width = round(width / factor) * factor | 
					
						
						|  | tmp_image_sizes.append((height, width)) | 
					
						
						|  | image_sizes = tmp_image_sizes | 
					
						
						|  |  | 
					
						
						|  | return image_sizes | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class HulumedImageProcessor(BaseImageProcessor): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a HuluMed image processor that dynamically resizes images based on the original images. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | do_resize (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to resize the image's (height, width) dimensions. | 
					
						
						|  | resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`): | 
					
						
						|  | Resampling filter to use when resizing the image. | 
					
						
						|  | do_rescale (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to rescale the image by the specified scale `rescale_factor`. | 
					
						
						|  | rescale_factor (`int` or `float`, *optional*, defaults to `1/255`): | 
					
						
						|  | Scale factor to use if rescaling the image. | 
					
						
						|  | do_normalize (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to normalize the image. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`): | 
					
						
						|  | Mean to use if normalizing the image. This is a float or list of floats for each channel in the image. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`): | 
					
						
						|  | Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `True`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | min_pixels (`int`, *optional*, defaults to `56 * 56`): | 
					
						
						|  | The min pixels of the image to resize the image. | 
					
						
						|  | max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`): | 
					
						
						|  | The max pixels of the image to resize the image. | 
					
						
						|  | patch_size (`int`, *optional*, defaults to 14): | 
					
						
						|  | The spacial patch size of the vision encoder. | 
					
						
						|  | merge_size (`int`, *optional*, defaults to `None`): | 
					
						
						|  | The default merge size for processing. If None, no default merge size is applied. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_input_names = ["pixel_values", "grid_sizes", "merge_sizes"] | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | do_resize: bool = True, | 
					
						
						|  | resample: PILImageResampling = PILImageResampling.BICUBIC, | 
					
						
						|  | do_rescale: bool = True, | 
					
						
						|  | rescale_factor: Union[int, float] = 1 / 255, | 
					
						
						|  | do_normalize: bool = True, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = True, | 
					
						
						|  | min_tokens: int = 4 * 4, | 
					
						
						|  | max_tokens: int = 16384, | 
					
						
						|  | patch_size: int = 14, | 
					
						
						|  | merge_size: Optional[int] = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> None: | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  | self.do_resize = do_resize | 
					
						
						|  | self.resample = resample | 
					
						
						|  | self.do_rescale = do_rescale | 
					
						
						|  | self.rescale_factor = rescale_factor | 
					
						
						|  | self.do_normalize = do_normalize | 
					
						
						|  | self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN | 
					
						
						|  | self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD | 
					
						
						|  | self.min_tokens = min_tokens | 
					
						
						|  | self.max_tokens = max_tokens | 
					
						
						|  | self.patch_size = patch_size | 
					
						
						|  | self.do_convert_rgb = do_convert_rgb | 
					
						
						|  | self.merge_size = merge_size | 
					
						
						|  |  | 
					
						
						|  | def _preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: Union[ImageInput, VideoInput], | 
					
						
						|  | target_size: List[int], | 
					
						
						|  | merge_size: int = 1, | 
					
						
						|  | do_resize: bool = None, | 
					
						
						|  | resample: PILImageResampling = None, | 
					
						
						|  | do_rescale: bool = None, | 
					
						
						|  | rescale_factor: float = None, | 
					
						
						|  | do_normalize: bool = None, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = None, | 
					
						
						|  | data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | 
					
						
						|  | input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`. | 
					
						
						|  | target_size (`List[int]`): | 
					
						
						|  | The target size to resize the image to. Should be a list of two integers: [target_height, target_width]. | 
					
						
						|  | merge_size (`int`, *optional*, defaults to `1`): | 
					
						
						|  | The merge size after the vision encoder. | 
					
						
						|  | do_resize (`bool`, *optional*, defaults to `self.do_resize`): | 
					
						
						|  | Whether to resize the image. | 
					
						
						|  | resample (`PILImageResampling`, *optional*, defaults to `self.resample`): | 
					
						
						|  | Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums. | 
					
						
						|  | do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | 
					
						
						|  | Whether to rescale the image. | 
					
						
						|  | rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | 
					
						
						|  | Scale factor to use if rescaling the image. | 
					
						
						|  | do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | 
					
						
						|  | Whether to normalize the image. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | 
					
						
						|  | Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | 
					
						
						|  | Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`): | 
					
						
						|  | The channel dimension format for the output image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - Unset: Use the channel dimension format of the input image. | 
					
						
						|  | input_data_format (`ChannelDimension` or `str`, *optional*): | 
					
						
						|  | The channel dimension format for the input image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
						
						|  | """ | 
					
						
						|  | images = make_list_of_images(images) | 
					
						
						|  |  | 
					
						
						|  | if do_convert_rgb: | 
					
						
						|  | images = [convert_to_rgb(image) for image in images] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | images = [to_numpy_array(image) for image in images] | 
					
						
						|  |  | 
					
						
						|  | if is_scaled_image(images[0]) and do_rescale: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | "It looks like you are trying to rescale already rescaled images. If the input" | 
					
						
						|  | " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again." | 
					
						
						|  | ) | 
					
						
						|  | if input_data_format is None: | 
					
						
						|  |  | 
					
						
						|  | input_data_format = infer_channel_dimension_format(images[0]) | 
					
						
						|  |  | 
					
						
						|  | height, width = get_image_size(images[0], channel_dim=input_data_format) | 
					
						
						|  | resized_height, resized_width = height, width | 
					
						
						|  | processed_images = [] | 
					
						
						|  | for image in images: | 
					
						
						|  | if do_resize: | 
					
						
						|  | resized_height, resized_width = target_size | 
					
						
						|  | image = resize( | 
					
						
						|  | image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if do_rescale: | 
					
						
						|  | image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format) | 
					
						
						|  |  | 
					
						
						|  | if do_normalize: | 
					
						
						|  | image = self.normalize( | 
					
						
						|  | image=image, mean=image_mean, std=image_std, input_data_format=input_data_format | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) | 
					
						
						|  | processed_images.append(image) | 
					
						
						|  |  | 
					
						
						|  | patches = np.array(processed_images) | 
					
						
						|  | if data_format == ChannelDimension.LAST: | 
					
						
						|  | patches = patches.transpose(0, 3, 1, 2) | 
					
						
						|  | t = patches.shape[0] | 
					
						
						|  | channel = patches.shape[1] | 
					
						
						|  | grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size | 
					
						
						|  | patches = patches.reshape( | 
					
						
						|  | t, | 
					
						
						|  | channel, | 
					
						
						|  | grid_h // merge_size, | 
					
						
						|  | merge_size, | 
					
						
						|  | self.patch_size, | 
					
						
						|  | grid_w // merge_size, | 
					
						
						|  | merge_size, | 
					
						
						|  | self.patch_size, | 
					
						
						|  | ) | 
					
						
						|  | patches = patches.transpose(0, 2, 5, 3, 6, 1, 4, 7) | 
					
						
						|  | flatten_patches = patches.reshape( | 
					
						
						|  | t * grid_h * grid_w, channel * self.patch_size * self.patch_size | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return flatten_patches, (t, grid_h, grid_w) | 
					
						
						|  |  | 
					
						
						|  | def preprocess( | 
					
						
						|  | self, | 
					
						
						|  | images: ImageInput, | 
					
						
						|  | do_resize: bool = None, | 
					
						
						|  | resample: PILImageResampling = None, | 
					
						
						|  | do_rescale: bool = None, | 
					
						
						|  | rescale_factor: float = None, | 
					
						
						|  | do_normalize: bool = None, | 
					
						
						|  | image_mean: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | image_std: Optional[Union[float, List[float]]] = None, | 
					
						
						|  | do_convert_rgb: bool = None, | 
					
						
						|  | merge_size: Optional[Union[int, List[int]]] = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | data_format: Optional[ChannelDimension] = ChannelDimension.FIRST, | 
					
						
						|  | input_data_format: Optional[Union[str, ChannelDimension]] = None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | images (`ImageInput`): | 
					
						
						|  | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If | 
					
						
						|  | passing in images with pixel values between 0 and 1, set `do_rescale=False`. | 
					
						
						|  | do_resize (`bool`, *optional*, defaults to `self.do_resize`): | 
					
						
						|  | Whether to resize the image. | 
					
						
						|  | resample (`int`, *optional*, defaults to `self.resample`): | 
					
						
						|  | Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only | 
					
						
						|  | has an effect if `do_resize` is set to `True`. | 
					
						
						|  | do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): | 
					
						
						|  | Whether to rescale the image. | 
					
						
						|  | rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`): | 
					
						
						|  | Rescale factor to rescale the image by if `do_rescale` is set to `True`. | 
					
						
						|  | do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): | 
					
						
						|  | Whether to normalize the image. | 
					
						
						|  | image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`): | 
					
						
						|  | Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`. | 
					
						
						|  | image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`): | 
					
						
						|  | Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to | 
					
						
						|  | `True`. | 
					
						
						|  | do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`): | 
					
						
						|  | Whether to convert the image to RGB. | 
					
						
						|  | merge_size (`int` or `List[int]`, *optional*, defaults to `self.merge_size`): | 
					
						
						|  | The merge size for processing. Can be a single value or a list of values (one per image). | 
					
						
						|  | return_tensors (`str` or `TensorType`, *optional*): | 
					
						
						|  | The type of tensors to return. Can be one of: | 
					
						
						|  | - Unset: Return a list of `np.ndarray`. | 
					
						
						|  | - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`. | 
					
						
						|  | - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`. | 
					
						
						|  | - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`. | 
					
						
						|  | - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`. | 
					
						
						|  | data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): | 
					
						
						|  | The channel dimension format for the output image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - Unset: Use the channel dimension format of the input image. | 
					
						
						|  | input_data_format (`ChannelDimension` or `str`, *optional*): | 
					
						
						|  | The channel dimension format for the input image. If unset, the channel dimension format is inferred | 
					
						
						|  | from the input image. Can be one of: | 
					
						
						|  | - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format. | 
					
						
						|  | - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format. | 
					
						
						|  | - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | do_resize = do_resize if do_resize is not None else self.do_resize | 
					
						
						|  | resample = resample if resample is not None else self.resample | 
					
						
						|  | do_rescale = do_rescale if do_rescale is not None else self.do_rescale | 
					
						
						|  | rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor | 
					
						
						|  | do_normalize = do_normalize if do_normalize is not None else self.do_normalize | 
					
						
						|  | image_mean = image_mean if image_mean is not None else self.image_mean | 
					
						
						|  | image_std = image_std if image_std is not None else self.image_std | 
					
						
						|  | do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if merge_size is None: | 
					
						
						|  | merge_size = self.merge_size if self.merge_size is not None else 1 | 
					
						
						|  |  | 
					
						
						|  | images = make_batched_images(images) | 
					
						
						|  |  | 
					
						
						|  | if isinstance(merge_size, (list, tuple)): | 
					
						
						|  | assert len(merge_size) == len(images), "Merge size must be the same length as images." | 
					
						
						|  | merge_sizes = merge_size | 
					
						
						|  | else: | 
					
						
						|  | merge_sizes = [merge_size for _ in images] | 
					
						
						|  | if all(merge_size == merge_sizes[0] for merge_size in merge_sizes): | 
					
						
						|  | target_sizes = simple_batched_resize( | 
					
						
						|  | images, | 
					
						
						|  | factor=self.patch_size * merge_sizes[0], | 
					
						
						|  | min_tokens=self.min_tokens, | 
					
						
						|  | max_tokens=self.max_tokens, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | target_sizes = batched_resize( | 
					
						
						|  | images, | 
					
						
						|  | factors=[self.patch_size * merge_size for merge_size in merge_sizes], | 
					
						
						|  | min_tokens=self.min_tokens, | 
					
						
						|  | max_tokens=self.max_tokens, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pixel_values, grid_sizes = [], [] | 
					
						
						|  | for image, merge_size, target_size in zip(images, merge_sizes, target_sizes): | 
					
						
						|  | patches, grid_size = self._preprocess( | 
					
						
						|  | image, | 
					
						
						|  | target_size=target_size, | 
					
						
						|  | merge_size=merge_size, | 
					
						
						|  | do_resize=do_resize, | 
					
						
						|  | resample=resample, | 
					
						
						|  | do_rescale=do_rescale, | 
					
						
						|  | rescale_factor=rescale_factor, | 
					
						
						|  | do_normalize=do_normalize, | 
					
						
						|  | image_mean=image_mean, | 
					
						
						|  | image_std=image_std, | 
					
						
						|  | data_format=data_format, | 
					
						
						|  | do_convert_rgb=do_convert_rgb, | 
					
						
						|  | input_data_format=input_data_format, | 
					
						
						|  | ) | 
					
						
						|  | pixel_values.append(patches) | 
					
						
						|  | grid_sizes.append(grid_size) | 
					
						
						|  |  | 
					
						
						|  | pixel_values = np.concatenate(pixel_values, axis=0) | 
					
						
						|  | grid_sizes = np.array(grid_sizes) | 
					
						
						|  | merge_sizes = np.array(merge_sizes) | 
					
						
						|  |  | 
					
						
						|  | data = { | 
					
						
						|  | "pixel_values": pixel_values, | 
					
						
						|  | "grid_sizes": grid_sizes, | 
					
						
						|  | "merge_sizes": merge_sizes, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | return BatchFeature(data=data, tensor_type=return_tensors) |