DeAR-8B-Reranker-RankNet-LoRA-v1
Model Description
DeAR-8B-Reranker-RankNet-LoRA-v1 is a LoRA (Low-Rank Adaptation) adapter for neural reranking. This lightweight adapter can be applied to LLaMA-3.1-8B to create a reranker with minimal storage overhead. It achieves comparable performance to the full fine-tuned model while requiring only ~100MB of storage.
Model Details
- Model Type: LoRA Adapter for Pointwise Reranking
- Base Model: meta-llama/Llama-3.1-8B
- Adapter Size: ~100MB (vs 16GB for full model)
- Training Method: LoRA with RankNet Loss + Knowledge Distillation
- LoRA Rank: 16
- LoRA Alpha: 32
- Target Modules: q_proj, v_proj, k_proj, o_proj, gate_proj, up_proj, down_proj
Key Features
β
Lightweight: Only 100MB vs 16GB full model
β
Efficient Training: Trains 3x faster than full fine-tuning
β
Easy Deployment: Just load adapter on top of base model
β
Comparable Performance: ~98% of full model performance
β
Memory Efficient: Lower GPU memory during training
Usage
Option 1: Load with PEFT (Recommended)
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel, PeftConfig
# Load LoRA adapter
adapter_path = "abdoelsayed/dear-8b-reranker-ranknet-lora-v1"
# Get base model from adapter config
config = PeftConfig.from_pretrained(adapter_path)
base_model_name = config.base_model_name_or_path
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
# Load base model
base_model = AutoModelForSequenceClassification.from_pretrained(
base_model_name,
num_labels=1,
torch_dtype=torch.bfloat16
)
# Load and merge LoRA adapter
model = PeftModel.from_pretrained(base_model, adapter_path)
model = model.merge_and_unload() # Merge adapter into base model
model.eval().cuda()
# Use the model
query = "What is machine learning?"
document = "Machine learning is a subset of artificial intelligence..."
inputs = tokenizer(
f"query: {query}",
f"document: {document}",
return_tensors="pt",
truncation=True,
max_length=228,
padding="max_length"
)
inputs = {k: v.cuda() for k, v in inputs.items()}
with torch.no_grad():
score = model(**inputs).logits.squeeze().item()
print(f"Relevance score: {score}")
Option 2: Use Helper Function
import torch
from typing import List, Tuple
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from peft import PeftModel, PeftConfig
def load_lora_ranker(adapter_path: str, device: str = "cuda"):
"""Load LoRA adapter and merge with base model."""
# Get base model path from adapter config
peft_config = PeftConfig.from_pretrained(adapter_path)
base_model_name = peft_config.base_model_name_or_path
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "right"
# Load base model
base_model = AutoModelForSequenceClassification.from_pretrained(
base_model_name,
num_labels=1,
torch_dtype=torch.bfloat16
)
# Load LoRA adapter and merge
model = PeftModel.from_pretrained(base_model, adapter_path)
model = model.merge_and_unload()
model.eval().to(device)
return tokenizer, model
# Load model
tokenizer, model = load_lora_ranker("abdoelsayed/dear-8b-reranker-ranknet-lora-v1")
# Rerank documents
@torch.inference_mode()
def rerank(tokenizer, model, query: str, docs: List[Tuple[str, str]], batch_size: int = 64):
"""Rerank documents for a query."""
device = next(model.parameters()).device
scores = []
for i in range(0, len(docs), batch_size):
batch = docs[i:i + batch_size]
queries = [f"query: {query}"] * len(batch)
documents = [f"document: {title} {text}" for title, text in batch]
inputs = tokenizer(
queries,
documents,
return_tensors="pt",
truncation=True,
max_length=228,
padding=True
)
inputs = {k: v.to(device) for k, v in inputs.items()}
logits = model(**inputs).logits.squeeze(-1)
scores.extend(logits.cpu().tolist())
return sorted(enumerate(scores), key=lambda x: x[1], reverse=True)
# Example
query = "When did Thomas Edison invent the light bulb?"
docs = [
("", "Thomas Edison invented the light bulb in 1879"),
("", "Coffee is good for diet"),
("", "Lightning strike at Seoul"),
]
ranking = rerank(tokenizer, model, query, docs)
print(ranking) # [(0, 5.2), (2, -3.1), (1, -4.8)]
Using Without Merging (Memory Efficient)
from peft import PeftModel, PeftConfig
from transformers import AutoModelForSequenceClassification
adapter_path = "abdoelsayed/dear-8b-reranker-ranknet-lora-v1"
config = PeftConfig.from_pretrained(adapter_path)
# Load base model
base_model = AutoModelForSequenceClassification.from_pretrained(
config.base_model_name_or_path,
num_labels=1,
torch_dtype=torch.bfloat16,
device_map="auto"
)
# Load adapter (without merging)
model = PeftModel.from_pretrained(base_model, adapter_path)
model.eval()
# Use model (adapter layers will be applied automatically)
# ... same inference code as above ...
Performance
| Benchmark | LoRA | Full Model | Difference |
|---|---|---|---|
| TREC DL19 | 74.2 | 74.5 | -0.3 |
| TREC DL20 | 72.5 | 72.8 | -0.3 |
| BEIR (Avg) | 44.9 | 45.2 | -0.3 |
| MS MARCO | 68.6 | 68.9 | -0.3 |
β 98% of full model performance with only 0.6% of the storage!
Training Details
LoRA Configuration
lora_config = {
"r": 16, # LoRA rank
"lora_alpha": 32, # Scaling factor
"target_modules": [
"q_proj", "v_proj", "k_proj", "o_proj",
"gate_proj", "up_proj", "down_proj"
],
"lora_dropout": 0.05,
"bias": "none",
"task_type": "SEQ_CLS"
}
Training Hyperparameters
training_args = {
"learning_rate": 1e-4, # Higher than full fine-tuning
"batch_size": 4, # Larger batch possible due to lower memory
"gradient_accumulation": 2,
"epochs": 2,
"warmup_ratio": 0.1,
"weight_decay": 0.01,
"max_length": 228,
"bf16": True
}
Hardware
- GPUs: 4x NVIDIA A100 (40GB)
- Training Time: ~12 hours (3x faster than full model)
- Memory Usage: ~28GB per GPU (vs ~38GB for full)
- Trainable Parameters: 67M (0.8% of total)
Advantages of LoRA Version
| Aspect | LoRA | Full Model |
|---|---|---|
| Storage | 100MB | 16GB |
| Training Time | 12h | 36h |
| Training Memory | 28GB | 38GB |
| Performance | 98% | 100% |
| Loading Time | Fast | Slow |
| Easy Updates | β Yes | β No |
When to Use LoRA vs Full Model
Use LoRA when:
- β Storage is limited
- β Training multiple domain-specific versions
- β Need fast iteration/experimentation
- β 0.3 NDCG@10 difference is acceptable
Use Full Model when:
- β Maximum performance required
- β Storage not a concern
- β Single production deployment
Fine-tuning on Your Data
from peft import LoraConfig, get_peft_model, TaskType
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
# Load base model
base_model = AutoModelForSequenceClassification.from_pretrained(
"meta-llama/Llama-3.1-8B",
num_labels=1
)
# Configure LoRA
lora_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
r=16,
lora_alpha=32,
target_modules=["q_proj", "v_proj", "k_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
)
# Apply LoRA
model = get_peft_model(base_model, lora_config)
model.print_trainable_parameters()
# Output: trainable params: 67M || all params: 8B || trainable%: 0.8%
# Train
training_args = TrainingArguments(
output_dir="./lora-finetuned",
learning_rate=1e-4,
per_device_train_batch_size=8,
num_train_epochs=3,
bf16=True,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=your_dataset,
)
trainer.train()
# Save only the LoRA adapter
model.save_pretrained("./lora-adapter")
Model Files
This adapter contains:
adapter_config.json- LoRA configurationadapter_model.safetensorsoradapter_model.bin- Adapter weights (~100MB)README.md- This documentation
Related Models
Full Model:
- DeAR-8B-RankNet - Full fine-tuned version
Other LoRA Adapters:
- DeAR-8B-CE-LoRA - Binary Cross-Entropy
- DeAR-8B-Listwise-LoRA - Listwise ranking
Resources:
Citation
@article{abdallah2025dear,
title={DeAR: Dual-Stage Document Reranking with Reasoning Agents via LLM Distillation},
author={Abdallah, Abdelrahman and Mozafari, Jamshid and Piryani, Bhawna and Jatowt, Adam},
journal={arXiv preprint arXiv:2508.16998},
year={2025}
}
License
MIT License
More Information
- GitHub: DataScienceUIBK/DeAR-Reranking
- Paper: arXiv:2508.16998
- Collection: DeAR Models
- Downloads last month
- 27
Model tree for abdoelsayed/dear-8b-reranker-ranknet-lora-v1
Base model
meta-llama/Llama-3.1-8B