SentenceTransformer based on google/embeddinggemma-300m
This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google/embeddinggemma-300m
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
(4): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
queries = [
"In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: sym",
]
documents = [
'In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: تاتا',
'In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: mcv',
'In the car insurance domain, represent this car make entity in arabic for entity similarity matching: تورو',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.4455, 0.4351, 0.5173]])
Evaluation
Metrics
Semantic Similarity
- Dataset:
insurance-val - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.9518 |
| spearman_cosine | 0.9267 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 33,973 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 21 tokens
- mean: 23.89 tokens
- max: 29 tokens
- min: 21 tokens
- mean: 23.88 tokens
- max: 29 tokens
- min: 0.0
- mean: 0.2
- max: 1.0
- Samples:
sentence_0 sentence_1 label In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: كوبراIn the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: cobra1.0In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: رووتس ملتي كلينIn the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: rokon0.0In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: شاينرايIn the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: shineray1.0 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 5multi_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 5max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robinrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | insurance-val_spearman_cosine |
|---|---|---|---|
| 0.1996 | 424 | - | 0.6773 |
| 0.2354 | 500 | 0.0477 | - |
| 0.3992 | 848 | - | 0.7524 |
| 0.4708 | 1000 | 0.0237 | - |
| 0.5989 | 1272 | - | 0.7464 |
| 0.7062 | 1500 | 0.0234 | - |
| 0.7985 | 1696 | - | 0.8396 |
| 0.9416 | 2000 | 0.0182 | - |
| 0.9981 | 2120 | - | 0.8616 |
| 1.0 | 2124 | - | 0.8494 |
| 1.1770 | 2500 | 0.0122 | - |
| 1.1977 | 2544 | - | 0.8766 |
| 1.3974 | 2968 | - | 0.8274 |
| 1.4124 | 3000 | 0.0107 | - |
| 1.5970 | 3392 | - | 0.8692 |
| 1.6478 | 3500 | 0.0087 | - |
| 1.7966 | 3816 | - | 0.8744 |
| 1.8832 | 4000 | 0.0085 | - |
| 1.9962 | 4240 | - | 0.8921 |
| 2.0 | 4248 | - | 0.8943 |
| 2.1186 | 4500 | 0.0059 | - |
| 2.1959 | 4664 | - | 0.8954 |
| 2.3540 | 5000 | 0.0043 | - |
| 2.3955 | 5088 | - | 0.9033 |
| 2.5895 | 5500 | 0.0038 | - |
| 2.5951 | 5512 | - | 0.8952 |
| 2.7947 | 5936 | - | 0.8996 |
| 2.8249 | 6000 | 0.0035 | - |
| 2.9944 | 6360 | - | 0.9217 |
| 3.0 | 6372 | - | 0.9214 |
| 3.0603 | 6500 | 0.0028 | - |
| 3.1940 | 6784 | - | 0.9259 |
| 3.2957 | 7000 | 0.0018 | - |
| 3.3936 | 7208 | - | 0.9242 |
| 3.5311 | 7500 | 0.0019 | - |
| 3.5932 | 7632 | - | 0.9186 |
| 3.7665 | 8000 | 0.0019 | - |
| 3.7928 | 8056 | - | 0.9172 |
| 3.9925 | 8480 | - | 0.9195 |
| 4.0 | 8496 | - | 0.9193 |
| 4.0019 | 8500 | 0.0016 | - |
| 4.1921 | 8904 | - | 0.9203 |
| 4.2373 | 9000 | 0.001 | - |
| 4.3917 | 9328 | - | 0.9248 |
| 4.4727 | 9500 | 0.0008 | - |
| 4.5913 | 9752 | - | 0.9264 |
| 4.7081 | 10000 | 0.0009 | - |
| 4.7910 | 10176 | - | 0.9264 |
| 4.9435 | 10500 | 0.001 | - |
| 4.9906 | 10600 | - | 0.9267 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.0
- Transformers: 4.56.1
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 7
Model tree for afiyarah/gemma-ins-make
Base model
google/embeddinggemma-300mEvaluation results
- Pearson Cosine on insurance valself-reported0.952
- Spearman Cosine on insurance valself-reported0.927