SentenceTransformer based on google/embeddinggemma-300m

This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google/embeddinggemma-300m
  • Maximum Sequence Length: 2048 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 2048, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
  (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
  (4): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
queries = [
    "In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: sym",
]
documents = [
    'In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: تاتا',
    'In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: mcv',
    'In the car insurance domain, represent this car make entity in arabic for entity similarity matching: تورو',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.4455, 0.4351, 0.5173]])

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.9518
spearman_cosine 0.9267

Training Details

Training Dataset

Unnamed Dataset

  • Size: 33,973 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 21 tokens
    • mean: 23.89 tokens
    • max: 29 tokens
    • min: 21 tokens
    • mean: 23.88 tokens
    • max: 29 tokens
    • min: 0.0
    • mean: 0.2
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: كوبرا In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: cobra 1.0
    In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: رووتس ملتي كلين In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: rokon 0.0
    In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: شاينراي In the car insurance domain, represent this car make entity in arabic and english for entity similarity matching: shineray 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 5
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 5
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss insurance-val_spearman_cosine
0.1996 424 - 0.6773
0.2354 500 0.0477 -
0.3992 848 - 0.7524
0.4708 1000 0.0237 -
0.5989 1272 - 0.7464
0.7062 1500 0.0234 -
0.7985 1696 - 0.8396
0.9416 2000 0.0182 -
0.9981 2120 - 0.8616
1.0 2124 - 0.8494
1.1770 2500 0.0122 -
1.1977 2544 - 0.8766
1.3974 2968 - 0.8274
1.4124 3000 0.0107 -
1.5970 3392 - 0.8692
1.6478 3500 0.0087 -
1.7966 3816 - 0.8744
1.8832 4000 0.0085 -
1.9962 4240 - 0.8921
2.0 4248 - 0.8943
2.1186 4500 0.0059 -
2.1959 4664 - 0.8954
2.3540 5000 0.0043 -
2.3955 5088 - 0.9033
2.5895 5500 0.0038 -
2.5951 5512 - 0.8952
2.7947 5936 - 0.8996
2.8249 6000 0.0035 -
2.9944 6360 - 0.9217
3.0 6372 - 0.9214
3.0603 6500 0.0028 -
3.1940 6784 - 0.9259
3.2957 7000 0.0018 -
3.3936 7208 - 0.9242
3.5311 7500 0.0019 -
3.5932 7632 - 0.9186
3.7665 8000 0.0019 -
3.7928 8056 - 0.9172
3.9925 8480 - 0.9195
4.0 8496 - 0.9193
4.0019 8500 0.0016 -
4.1921 8904 - 0.9203
4.2373 9000 0.001 -
4.3917 9328 - 0.9248
4.4727 9500 0.0008 -
4.5913 9752 - 0.9264
4.7081 10000 0.0009 -
4.7910 10176 - 0.9264
4.9435 10500 0.001 -
4.9906 10600 - 0.9267

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.56.1
  • PyTorch: 2.8.0+cu126
  • Accelerate: 1.10.1
  • Datasets: 4.0.0
  • Tokenizers: 0.22.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
7
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for afiyarah/gemma-ins-make

Finetuned
(154)
this model

Evaluation results