CafeBERT_massive_v3 / README.md
aiface's picture
Model save
2e366d1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: uitnlp/CafeBERT
tags:
  - generated_from_trainer
model-index:
  - name: CafeBERT_massive_v3
    results: []

CafeBERT_massive_v3

This model is a fine-tuned version of uitnlp/CafeBERT on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 5.2297
  • Slot P: 0.7256
  • Slot R: 0.7801
  • Slot F1: 0.7519
  • Slot Exact Match: 0.7260
  • Intent Acc: 0.8633

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Slot P Slot R Slot F1 Slot Exact Match Intent Acc
No log 1.0 45 16.4744 0.2572 0.0801 0.1222 0.3114 0.0930
72.336 2.0 90 6.6272 0.5583 0.6075 0.5818 0.5268 0.6021
20.704 3.0 135 4.4083 0.6449 0.7338 0.6865 0.6596 0.7885
9.4202 4.0 180 3.7185 0.6867 0.7493 0.7166 0.6926 0.8367
6.3529 5.0 225 3.6662 0.7024 0.7726 0.7358 0.7083 0.8647
4.7787 6.0 270 3.8379 0.7102 0.7657 0.7369 0.7122 0.8667
3.6929 7.0 315 3.7687 0.7152 0.7796 0.7460 0.7191 0.8652
2.9663 8.0 360 4.1024 0.7037 0.7905 0.7446 0.7186 0.8677
2.4189 9.0 405 4.2478 0.7177 0.7856 0.7501 0.7206 0.8692
1.9492 10.0 450 4.4022 0.7179 0.7801 0.7477 0.7275 0.8697
1.9492 11.0 495 4.6437 0.7095 0.7751 0.7408 0.7122 0.8706
1.5099 12.0 540 4.7049 0.7223 0.7881 0.7537 0.7290 0.8706
1.2818 13.0 585 4.9417 0.7189 0.7811 0.7487 0.7245 0.8677
1.0546 14.0 630 5.0501 0.7188 0.7781 0.7473 0.7226 0.8667
0.8641 15.0 675 5.2297 0.7256 0.7801 0.7519 0.7260 0.8633

Framework versions

  • Transformers 4.55.0
  • Pytorch 2.7.0+cu126
  • Datasets 3.6.0
  • Tokenizers 0.21.4