SentenceTransformer based on nomic-ai/modernbert-embed-base
This is a sentence-transformers model finetuned from nomic-ai/modernbert-embed-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nomic-ai/modernbert-embed-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("alpcansoydas/product-model-02.12.25-total46clas-ifhavemorethan100sampleperclass-0.71acc")
# Run inference
sentences = [
'Controller CXC',
'Power generation control equipment',
'Personal communication devices',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | nan |
| spearman_cosine | nan |
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,012 training samples
- Columns:
sentence1andsentence2 - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 4 tokens
- mean: 18.46 tokens
- max: 85 tokens
- min: 4 tokens
- mean: 6.42 tokens
- max: 11 tokens
- Samples:
sentence1 sentence2 HPE MSA 14.4T SAS 10K SFF M2 6pk HDD BdlMedia storage devicesHuawei Solar Greensites Solution (Yerli Panel_4*540Wp_Huawei Panel + PVPU+Konstrüksiyon+İşçilik)Power generation control equipmentNetEngine9000 10G EVPN Port License(per 10G)Network management software - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 3,127 evaluation samples
- Columns:
sentence1andsentence2 - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 type string string details - min: 3 tokens
- mean: 18.0 tokens
- max: 77 tokens
- min: 4 tokens
- mean: 6.4 tokens
- max: 11 tokens
- Samples:
sentence1 sentence2 CONNECTION CABLEElectrical cable and accessoriesMMU2 B 4-16 (24V, -48V)Electronic component parts and raw materials and accessories3ft C14 to C13 locking power cable 15A/250V - redElectrical cable and accessories - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 32warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 32per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | spearman_cosine |
|---|---|---|---|---|
| 0.1279 | 100 | 2.5126 | 2.1189 | nan |
| 0.2558 | 200 | 1.9979 | 1.9490 | nan |
| 0.3836 | 300 | 1.8803 | 1.9128 | nan |
| 0.5115 | 400 | 1.8242 | 1.8253 | nan |
| 0.6394 | 500 | 1.8024 | 1.7830 | nan |
| 0.7673 | 600 | 1.7425 | 1.7727 | nan |
| 0.8951 | 700 | 1.7302 | 1.7469 | nan |
| 1.0230 | 800 | 1.6722 | 1.7273 | nan |
| 1.1509 | 900 | 1.4698 | 1.7384 | nan |
| 1.2788 | 1000 | 1.5151 | 1.7111 | nan |
| 1.4066 | 1100 | 1.5151 | 1.7173 | nan |
| 1.5345 | 1200 | 1.494 | 1.6988 | nan |
| 1.6624 | 1300 | 1.4935 | 1.7058 | nan |
| 1.7903 | 1400 | 1.5143 | 1.6664 | nan |
| 1.9182 | 1500 | 1.5253 | 1.6636 | nan |
| 2.0460 | 1600 | 1.4355 | 1.6781 | nan |
| 2.1739 | 1700 | 1.3638 | 1.6944 | nan |
| 2.3018 | 1800 | 1.319 | 1.6829 | nan |
| 2.4297 | 1900 | 1.2848 | 1.7047 | nan |
| 2.5575 | 2000 | 1.3207 | 1.6950 | nan |
| 2.6854 | 2100 | 1.2769 | 1.6911 | nan |
| 2.8133 | 2200 | 1.2934 | 1.6958 | nan |
| 2.9412 | 2300 | 1.3244 | 1.6897 | nan |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 11
Model tree for alpcansoydas/product-model-02.12.25-total46clas-ifhavemorethan100sampleperclass-0.71acc
Base model
answerdotai/ModernBERT-base
Finetuned
nomic-ai/modernbert-embed-base
Evaluation results
- Pearson Cosine on Unknownself-reportedNaN
- Spearman Cosine on Unknownself-reportedNaN