KVL-DPO

Overview

KVL-DPO is a 15.1B parameter Vision-Language Model that extends KVL through Direct Preference Optimization (DPO) training. This model was fine-tuned using the VLFeedback dataset to better align with human preferences in visual-language understanding tasks.

Model Architecture

Component Details
Base Model amoeba04/KVL
Original Foundation InternVL3_5-14B-Pretrained
Vision Encoder InternViT-300M (0.3B parameters)
Language Model Qwen3-14B (14.8B parameters)
Total Parameters 15.1B
Precision BF16
Architecture ViT-MLP-LLM (InternVL Chat)

Training Details

DPO Training Configuration

About VLFeedback Dataset

VLFeedback is a large-scale preference dataset for vision-language models containing:

  • 80K+ preference pairs for visual instruction following
  • Human-annotated preferences comparing model responses
  • Diverse visual-language tasks including VQA, image captioning, and visual reasoning

Training Lineage

  1. Stage 1 (SFT): InternVL3_5-14B-Pretrained → KVL (trained on ~4M multimodal samples)
  2. Stage 2 (DPO): KVL → KVL-DPO (aligned using VLFeedback)

Quick Start

Requirements

pip install transformers>=4.52.1 torch torchvision timm
pip install flash-attn --no-build-isolation  # Optional but recommended

Basic Usage

import torch
from transformers import AutoTokenizer, AutoModel
from PIL import Image
import torchvision.transforms as T
from torchvision.transforms.functional import InterpolationMode

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

def build_transform(input_size):
    return T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    ])

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1)
        for i in range(1, n + 1) for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size
    )

    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(img) for img in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

# Load model
model_path = "amoeba04/KVL-DPO"
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)

# Inference
image = load_image('your_image.jpg').to(torch.bfloat16).cuda()
generation_config = dict(max_new_tokens=1024, do_sample=False)

question = '<image>\nDescribe this image in detail.'
response = model.chat(tokenizer, image, question, generation_config)
print(response)

Multi-GPU Inference

model = AutoModel.from_pretrained(
    "amoeba04/KVL-DPO",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    use_flash_attn=True,
    trust_remote_code=True,
    device_map="auto"  # Automatic multi-GPU distribution
).eval()

Evaluation with VLMEvalKit

The model is fully compatible with VLMEvalKit.

Register in vlmeval/config.py:

from functools import partial
from vlmeval.vlm import InternVLChat

# Add to ungrouped dict
"KVL-DPO": partial(InternVLChat, model_path="amoeba04/KVL-DPO", max_new_tokens=16384, version="V2.0"),

Run evaluation:

python run.py --data MMBench_DEV_EN --model KVL-DPO --verbose

Intended Use

  • Scientific Document Understanding: Analyzing figures, tables, and diagrams from scientific papers
  • Medical Image Analysis: Radiology, pathology, and endoscopy image interpretation
  • Visual Question Answering: General and domain-specific VQA tasks
  • Chain-of-Thought Reasoning: Complex visual reasoning with step-by-step explanations

Acknowledgments

License

This model is released under the Apache 2.0 License.

Downloads last month
15
Safetensors
Model size
15B params
Tensor type
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for amoeba04/KVL-DPO

Finetuned
amoeba04/KVL
Finetuned
(1)
this model