See axolotl config
axolotl version: 0.12.2
base_model: kakaocorp/kanana-1.5-2.1b-instruct-2505
load_in_8bit: false
load_in_4bit: false
datasets:
- path: train.jsonl
type: chat_template
dataset_prepared_path: preprocess
val_set_size: 0.01
output_dir: ./outputs
dataloader_num_workers: 56
adapter:
lora_model_dir:
sequence_len: 16384
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: fastcampus
wandb_entity: guijinson
wandb_watch:
wandb_name: fc-proj2-reasoning-2.1b
wandb_log_model:
hub_model_id: amphora/fc-reasoning-2.1b
gradient_accumulation_steps: 64
micro_batch_size: 2
num_epochs: 3
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 2e-5
bf16: auto
tf32: false
gradient_checkpointing:
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
warmup_ratio: 0.05
weight_decay: 0.01
evals_per_epoch: 0
saves_per_epoch: 1
fc-reasoning-2.1b
This model is a fine-tuned version of kakaocorp/kanana-1.5-2.1b-instruct-2505 on the train.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 53
- training_steps: 1072
Training results
Framework versions
- Transformers 4.55.2
- Pytorch 2.6.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 1