SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'người tiếp_nhận hồ_sơ có trách_nhiệm gì trong quá_trình chứng_thực hợp_đồng , giao_dịch ?',
'điều 20 . chứng_thực hợp_đồng , giao_dịch tại bộ_phận tiếp_nhận và trả kết_quả theo cơ_chế một cửa , một cửa liên_thông \n 1 . trường_hợp người yêu_cầu chứng_thực hợp_đồng , giao_dịch nộp hồ_sơ trực_tiếp tại bộ_phận tiếp_nhận và trả kết_quả theo cơ_chế một cửa , một cửa liên_thông , thì các bên phải ký trước mặt người tiếp_nhận hồ_sơ . trường_hợp người giao_kết_hợp_đồng , giao_dịch là đại_diện của tổ_chức tín_dụng , doanh_nghiệp đã đăng_ký chữ_ký mẫu tại cơ_quan thực_hiện chứng_thực , thì người đó có_thể ký trước vào hợp_đồng , giao_dịch . người tiếp_nhận hồ_sơ có trách_nhiệm đối_chiếu chữ_ký trong hợp_đồng , giao_dịch với chữ_ký mẫu . nếu thấy chữ_ký trong hợp_đồng , giao_dịch khác chữ_ký mẫu , thì yêu_cầu người đó ký trước mặt người tiếp_nhận hồ_sơ . người tiếp_nhận hồ_sơ phải chịu trách_nhiệm về việc các bên đã ký trước mặt mình . \n 2 . người tiếp_nhận hồ_sơ có trách_nhiệm kiểm_tra giấy_tờ , hồ_sơ .',
'điều 8 . trị_giá tính thuế , thời_điểm tính thuế \n 1 . trị_giá tính thuế_xuất_khẩu , thuế_nhập_khẩu là trị_giá hải_quan theo quy_định của luật hải_quan . \n 2 . thời_điểm tính thuế_xuất_khẩu , thuế_nhập_khẩu là thời_điểm đăng_ký tờ khai hải_quan . đối_với hàng_hóa xuất_khẩu , nhập_khẩu thuộc đối_tượng không chịu thuế , miễn thuế_xuất_khẩu , thuế_nhập_khẩu hoặc áp_dụng thuế_suất , mức thuế tuyệt_đối trong hạn_ngạch thuế_quan nhưng được thay_đổi về đối_tượng không chịu thuế , miễn thuế , áp_dụng thuế_suất , mức thuế tuyệt_đối trong hạn_ngạch thuế_quan theo quy_định của pháp_luật thì thời_điểm tính thuế là thời_điểm đăng_ký tờ khai hải_quan mới . thời_điểm đăng_ký tờ khai hải_quan thực_hiện theo quy_định của pháp_luật về hải_quan .',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Triplet
| Metric |
Value |
| cosine_accuracy |
0.5845 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 2
per_device_eval_batch_size: 2
learning_rate: 2e-05
warmup_ratio: 0.05
bf16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: no
prediction_loss_only: True
per_device_train_batch_size: 2
per_device_eval_batch_size: 2
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.05
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
public_administrative_cosine_accuracy |
| 0 |
0 |
- |
0.5845 |
| 0.0032 |
100 |
1.3479 |
- |
| 0.0063 |
200 |
1.3106 |
- |
| 0.0095 |
300 |
1.3496 |
- |
| 0.0127 |
400 |
1.1463 |
- |
| 0.0158 |
500 |
0.7624 |
- |
| 0.0190 |
600 |
0.6289 |
- |
| 0.0222 |
700 |
0.5052 |
- |
| 0.0253 |
800 |
0.5615 |
- |
| 0.0285 |
900 |
0.2871 |
- |
| 0.0317 |
1000 |
0.4623 |
- |
| 0.0348 |
1100 |
0.5214 |
- |
| 0.0380 |
1200 |
0.4097 |
- |
| 0.0412 |
1300 |
0.4068 |
- |
| 0.0444 |
1400 |
0.2873 |
- |
| 0.0475 |
1500 |
0.3133 |
- |
| 0.0507 |
1600 |
0.1869 |
- |
| 0.0539 |
1700 |
0.3004 |
- |
| 0.0570 |
1800 |
0.2164 |
- |
| 0.0602 |
1900 |
0.293 |
- |
| 0.0634 |
2000 |
0.17 |
- |
| 0.0665 |
2100 |
0.1669 |
- |
| 0.0697 |
2200 |
0.1337 |
- |
| 0.0729 |
2300 |
0.2076 |
- |
| 0.0760 |
2400 |
0.2348 |
- |
| 0.0792 |
2500 |
0.2016 |
- |
| 0.0824 |
2600 |
0.1139 |
- |
| 0.0855 |
2700 |
0.2098 |
- |
| 0.0887 |
2800 |
0.1562 |
- |
| 0.0919 |
2900 |
0.1301 |
- |
| 0.0950 |
3000 |
0.1271 |
- |
| 0.0982 |
3100 |
0.1226 |
- |
| 0.1014 |
3200 |
0.147 |
- |
| 0.1045 |
3300 |
0.1135 |
- |
| 0.1077 |
3400 |
0.1004 |
- |
| 0.1109 |
3500 |
0.0795 |
- |
| 0.1141 |
3600 |
0.1719 |
- |
| 0.1172 |
3700 |
0.1445 |
- |
| 0.1204 |
3800 |
0.1206 |
- |
| 0.1236 |
3900 |
0.0458 |
- |
| 0.1267 |
4000 |
0.1122 |
- |
| 0.1299 |
4100 |
0.0483 |
- |
| 0.1331 |
4200 |
0.0493 |
- |
| 0.1362 |
4300 |
0.0883 |
- |
| 0.1394 |
4400 |
0.0926 |
- |
| 0.1426 |
4500 |
0.1196 |
- |
| 0.1457 |
4600 |
0.0793 |
- |
| 0.1489 |
4700 |
0.1418 |
- |
| 0.1521 |
4800 |
0.1341 |
- |
| 0.1552 |
4900 |
0.106 |
- |
| 0.1584 |
5000 |
0.1032 |
- |
| 0.1616 |
5100 |
0.0789 |
- |
| 0.1647 |
5200 |
0.0513 |
- |
| 0.1679 |
5300 |
0.0244 |
- |
| 0.1711 |
5400 |
0.0621 |
- |
| 0.1742 |
5500 |
0.0301 |
- |
| 0.1774 |
5600 |
0.0456 |
- |
| 0.1806 |
5700 |
0.0444 |
- |
| 0.1837 |
5800 |
0.0573 |
- |
| 0.1869 |
5900 |
0.0635 |
- |
| 0.1901 |
6000 |
0.1086 |
- |
| 0.1933 |
6100 |
0.1383 |
- |
| 0.1964 |
6200 |
0.1049 |
- |
| 0.1996 |
6300 |
0.0843 |
- |
| 0.2028 |
6400 |
0.0458 |
- |
| 0.2059 |
6500 |
0.059 |
- |
| 0.2091 |
6600 |
0.0269 |
- |
| 0.2123 |
6700 |
0.0417 |
- |
| 0.2154 |
6800 |
0.0593 |
- |
| 0.2186 |
6900 |
0.0534 |
- |
| 0.2218 |
7000 |
0.0718 |
- |
| 0.2249 |
7100 |
0.1301 |
- |
| 0.2281 |
7200 |
0.0705 |
- |
| 0.2313 |
7300 |
0.0492 |
- |
| 0.2344 |
7400 |
0.0908 |
- |
| 0.2376 |
7500 |
0.0462 |
- |
| 0.2408 |
7600 |
0.0772 |
- |
| 0.2439 |
7700 |
0.0906 |
- |
| 0.2471 |
7800 |
0.0739 |
- |
| 0.2503 |
7900 |
0.0325 |
- |
| 0.2534 |
8000 |
0.1081 |
- |
| 0.2566 |
8100 |
0.0472 |
- |
| 0.2598 |
8200 |
0.0613 |
- |
| 0.2629 |
8300 |
0.0281 |
- |
| 0.2661 |
8400 |
0.0184 |
- |
| 0.2693 |
8500 |
0.0447 |
- |
| 0.2725 |
8600 |
0.0609 |
- |
| 0.2756 |
8700 |
0.0323 |
- |
| 0.2788 |
8800 |
0.0794 |
- |
| 0.2820 |
8900 |
0.0477 |
- |
| 0.2851 |
9000 |
0.0819 |
- |
| 0.2883 |
9100 |
0.0838 |
- |
| 0.2915 |
9200 |
0.0512 |
- |
| 0.2946 |
9300 |
0.0641 |
- |
| 0.2978 |
9400 |
0.0549 |
- |
| 0.3010 |
9500 |
0.0328 |
- |
| 0.3041 |
9600 |
0.0338 |
- |
| 0.3073 |
9700 |
0.0976 |
- |
| 0.3105 |
9800 |
0.0413 |
- |
| 0.3136 |
9900 |
0.0746 |
- |
| 0.3168 |
10000 |
0.0683 |
- |
| 0.3200 |
10100 |
0.0137 |
- |
| 0.3231 |
10200 |
0.0521 |
- |
| 0.3263 |
10300 |
0.0518 |
- |
| 0.3295 |
10400 |
0.0764 |
- |
| 0.3326 |
10500 |
0.0447 |
- |
| 0.3358 |
10600 |
0.0698 |
- |
| 0.3390 |
10700 |
0.0488 |
- |
| 0.3422 |
10800 |
0.0288 |
- |
| 0.3453 |
10900 |
0.0155 |
- |
| 0.3485 |
11000 |
0.0443 |
- |
| 0.3517 |
11100 |
0.0451 |
- |
| 0.3548 |
11200 |
0.0735 |
- |
| 0.3580 |
11300 |
0.0245 |
- |
| 0.3612 |
11400 |
0.0311 |
- |
| 0.3643 |
11500 |
0.0565 |
- |
| 0.3675 |
11600 |
0.0447 |
- |
| 0.3707 |
11700 |
0.0785 |
- |
| 0.3738 |
11800 |
0.0509 |
- |
| 0.3770 |
11900 |
0.0496 |
- |
| 0.3802 |
12000 |
0.0482 |
- |
| 0.3833 |
12100 |
0.0174 |
- |
| 0.3865 |
12200 |
0.0665 |
- |
| 0.3897 |
12300 |
0.0475 |
- |
| 0.3928 |
12400 |
0.01 |
- |
| 0.3960 |
12500 |
0.0345 |
- |
| 0.3992 |
12600 |
0.027 |
- |
| 0.4023 |
12700 |
0.0364 |
- |
| 0.4055 |
12800 |
0.0226 |
- |
| 0.4087 |
12900 |
0.1074 |
- |
| 0.4118 |
13000 |
0.0179 |
- |
| 0.4150 |
13100 |
0.0377 |
- |
| 0.4182 |
13200 |
0.0384 |
- |
| 0.4214 |
13300 |
0.0309 |
- |
| 0.4245 |
13400 |
0.0277 |
- |
| 0.4277 |
13500 |
0.0196 |
- |
| 0.4309 |
13600 |
0.0386 |
- |
| 0.4340 |
13700 |
0.0135 |
- |
| 0.4372 |
13800 |
0.0375 |
- |
| 0.4404 |
13900 |
0.0583 |
- |
| 0.4435 |
14000 |
0.0175 |
- |
| 0.4467 |
14100 |
0.0366 |
- |
| 0.4499 |
14200 |
0.0445 |
- |
| 0.4530 |
14300 |
0.014 |
- |
| 0.4562 |
14400 |
0.0369 |
- |
| 0.4594 |
14500 |
0.0109 |
- |
| 0.4625 |
14600 |
0.0151 |
- |
| 0.4657 |
14700 |
0.0487 |
- |
| 0.4689 |
14800 |
0.0166 |
- |
| 0.4720 |
14900 |
0.0047 |
- |
| 0.4752 |
15000 |
0.0247 |
- |
| 0.4784 |
15100 |
0.0198 |
- |
| 0.4815 |
15200 |
0.0492 |
- |
| 0.4847 |
15300 |
0.027 |
- |
| 0.4879 |
15400 |
0.0368 |
- |
| 0.4911 |
15500 |
0.0072 |
- |
| 0.4942 |
15600 |
0.0448 |
- |
| 0.4974 |
15700 |
0.0334 |
- |
| 0.5006 |
15800 |
0.0401 |
- |
| 0.5037 |
15900 |
0.0158 |
- |
| 0.5069 |
16000 |
0.0247 |
- |
| 0.5101 |
16100 |
0.0452 |
- |
| 0.5132 |
16200 |
0.0337 |
- |
| 0.5164 |
16300 |
0.0106 |
- |
| 0.5196 |
16400 |
0.0105 |
- |
| 0.5227 |
16500 |
0.0167 |
- |
| 0.5259 |
16600 |
0.0104 |
- |
| 0.5291 |
16700 |
0.022 |
- |
| 0.5322 |
16800 |
0.0591 |
- |
| 0.5354 |
16900 |
0.0227 |
- |
| 0.5386 |
17000 |
0.0503 |
- |
| 0.5417 |
17100 |
0.0424 |
- |
| 0.5449 |
17200 |
0.0185 |
- |
| 0.5481 |
17300 |
0.0174 |
- |
| 0.5512 |
17400 |
0.0086 |
- |
| 0.5544 |
17500 |
0.0292 |
- |
| 0.5576 |
17600 |
0.0072 |
- |
| 0.5607 |
17700 |
0.0633 |
- |
| 0.5639 |
17800 |
0.0425 |
- |
| 0.5671 |
17900 |
0.0208 |
- |
| 0.5703 |
18000 |
0.009 |
- |
| 0.5734 |
18100 |
0.0394 |
- |
| 0.5766 |
18200 |
0.0096 |
- |
| 0.5798 |
18300 |
0.0171 |
- |
| 0.5829 |
18400 |
0.0246 |
- |
| 0.5861 |
18500 |
0.0508 |
- |
| 0.5893 |
18600 |
0.0138 |
- |
| 0.5924 |
18700 |
0.0344 |
- |
| 0.5956 |
18800 |
0.0345 |
- |
| 0.5988 |
18900 |
0.044 |
- |
| 0.6019 |
19000 |
0.0234 |
- |
| 0.6051 |
19100 |
0.0118 |
- |
| 0.6083 |
19200 |
0.0333 |
- |
| 0.6114 |
19300 |
0.0182 |
- |
| 0.6146 |
19400 |
0.0115 |
- |
| 0.6178 |
19500 |
0.0321 |
- |
| 0.6209 |
19600 |
0.015 |
- |
| 0.6241 |
19700 |
0.0245 |
- |
| 0.6273 |
19800 |
0.0202 |
- |
| 0.6304 |
19900 |
0.0365 |
- |
| 0.6336 |
20000 |
0.0057 |
- |
| 0.6368 |
20100 |
0.1269 |
- |
| 0.6399 |
20200 |
0.0281 |
- |
| 0.6431 |
20300 |
0.0092 |
- |
| 0.6463 |
20400 |
0.0486 |
- |
| 0.6495 |
20500 |
0.0323 |
- |
| 0.6526 |
20600 |
0.0175 |
- |
| 0.6558 |
20700 |
0.0078 |
- |
| 0.6590 |
20800 |
0.0143 |
- |
| 0.6621 |
20900 |
0.0159 |
- |
| 0.6653 |
21000 |
0.0261 |
- |
| 0.6685 |
21100 |
0.0083 |
- |
| 0.6716 |
21200 |
0.0232 |
- |
| 0.6748 |
21300 |
0.009 |
- |
| 0.6780 |
21400 |
0.0051 |
- |
| 0.6811 |
21500 |
0.0091 |
- |
| 0.6843 |
21600 |
0.0189 |
- |
| 0.6875 |
21700 |
0.0044 |
- |
| 0.6906 |
21800 |
0.0284 |
- |
| 0.6938 |
21900 |
0.0231 |
- |
| 0.6970 |
22000 |
0.0137 |
- |
| 0.7001 |
22100 |
0.0412 |
- |
| 0.7033 |
22200 |
0.0111 |
- |
| 0.7065 |
22300 |
0.063 |
- |
| 0.7096 |
22400 |
0.0182 |
- |
| 0.7128 |
22500 |
0.0261 |
- |
| 0.7160 |
22600 |
0.0221 |
- |
| 0.7192 |
22700 |
0.0534 |
- |
| 0.7223 |
22800 |
0.0295 |
- |
| 0.7255 |
22900 |
0.0073 |
- |
| 0.7287 |
23000 |
0.0075 |
- |
| 0.7318 |
23100 |
0.0309 |
- |
| 0.7350 |
23200 |
0.0279 |
- |
| 0.7382 |
23300 |
0.013 |
- |
| 0.7413 |
23400 |
0.0147 |
- |
| 0.7445 |
23500 |
0.0154 |
- |
| 0.7477 |
23600 |
0.0158 |
- |
| 0.7508 |
23700 |
0.0157 |
- |
| 0.7540 |
23800 |
0.0052 |
- |
| 0.7572 |
23900 |
0.0072 |
- |
| 0.7603 |
24000 |
0.0132 |
- |
| 0.7635 |
24100 |
0.0243 |
- |
| 0.7667 |
24200 |
0.0201 |
- |
| 0.7698 |
24300 |
0.0168 |
- |
| 0.7730 |
24400 |
0.0132 |
- |
| 0.7762 |
24500 |
0.014 |
- |
| 0.7793 |
24600 |
0.0351 |
- |
| 0.7825 |
24700 |
0.0318 |
- |
| 0.7857 |
24800 |
0.0099 |
- |
| 0.7888 |
24900 |
0.0395 |
- |
| 0.7920 |
25000 |
0.0185 |
- |
| 0.7952 |
25100 |
0.0114 |
- |
| 0.7984 |
25200 |
0.0246 |
- |
| 0.8015 |
25300 |
0.0392 |
- |
| 0.8047 |
25400 |
0.0042 |
- |
| 0.8079 |
25500 |
0.0188 |
- |
| 0.8110 |
25600 |
0.0126 |
- |
| 0.8142 |
25700 |
0.0535 |
- |
| 0.8174 |
25800 |
0.0164 |
- |
| 0.8205 |
25900 |
0.0433 |
- |
| 0.8237 |
26000 |
0.0313 |
- |
| 0.8269 |
26100 |
0.0157 |
- |
| 0.8300 |
26200 |
0.0188 |
- |
| 0.8332 |
26300 |
0.0307 |
- |
| 0.8364 |
26400 |
0.0074 |
- |
| 0.8395 |
26500 |
0.0468 |
- |
| 0.8427 |
26600 |
0.0138 |
- |
| 0.8459 |
26700 |
0.0044 |
- |
| 0.8490 |
26800 |
0.0366 |
- |
| 0.8522 |
26900 |
0.0343 |
- |
| 0.8554 |
27000 |
0.0051 |
- |
| 0.8585 |
27100 |
0.0294 |
- |
| 0.8617 |
27200 |
0.0373 |
- |
| 0.8649 |
27300 |
0.0097 |
- |
| 0.8681 |
27400 |
0.0177 |
- |
| 0.8712 |
27500 |
0.0124 |
- |
| 0.8744 |
27600 |
0.0126 |
- |
| 0.8776 |
27700 |
0.0128 |
- |
| 0.8807 |
27800 |
0.01 |
- |
| 0.8839 |
27900 |
0.0119 |
- |
| 0.8871 |
28000 |
0.0169 |
- |
| 0.8902 |
28100 |
0.0081 |
- |
| 0.8934 |
28200 |
0.0075 |
- |
| 0.8966 |
28300 |
0.0159 |
- |
| 0.8997 |
28400 |
0.0094 |
- |
| 0.9029 |
28500 |
0.0154 |
- |
| 0.9061 |
28600 |
0.0079 |
- |
| 0.9092 |
28700 |
0.0088 |
- |
| 0.9124 |
28800 |
0.0046 |
- |
| 0.9156 |
28900 |
0.0038 |
- |
| 0.9187 |
29000 |
0.0132 |
- |
| 0.9219 |
29100 |
0.0128 |
- |
| 0.9251 |
29200 |
0.0141 |
- |
| 0.9282 |
29300 |
0.0033 |
- |
| 0.9314 |
29400 |
0.0103 |
- |
| 0.9346 |
29500 |
0.034 |
- |
| 0.9377 |
29600 |
0.0036 |
- |
| 0.9409 |
29700 |
0.0229 |
- |
| 0.9441 |
29800 |
0.0113 |
- |
| 0.9473 |
29900 |
0.0136 |
- |
| 0.9504 |
30000 |
0.0283 |
- |
| 0.9536 |
30100 |
0.0181 |
- |
| 0.9568 |
30200 |
0.0108 |
- |
| 0.9599 |
30300 |
0.0208 |
- |
| 0.9631 |
30400 |
0.0227 |
- |
| 0.9663 |
30500 |
0.0192 |
- |
| 0.9694 |
30600 |
0.0122 |
- |
| 0.9726 |
30700 |
0.0061 |
- |
| 0.9758 |
30800 |
0.039 |
- |
| 0.9789 |
30900 |
0.0115 |
- |
| 0.9821 |
31000 |
0.0122 |
- |
| 0.9853 |
31100 |
0.0085 |
- |
| 0.9884 |
31200 |
0.035 |
- |
| 0.9916 |
31300 |
0.016 |
- |
| 0.9948 |
31400 |
0.0337 |
- |
| 0.9979 |
31500 |
0.0056 |
- |
| 1.0011 |
31600 |
0.0119 |
- |
| 1.0043 |
31700 |
0.0046 |
- |
| 1.0074 |
31800 |
0.005 |
- |
| 1.0106 |
31900 |
0.0076 |
- |
| 1.0138 |
32000 |
0.0067 |
- |
| 1.0169 |
32100 |
0.0047 |
- |
| 1.0201 |
32200 |
0.0144 |
- |
| 1.0233 |
32300 |
0.0434 |
- |
| 1.0265 |
32400 |
0.0357 |
- |
| 1.0296 |
32500 |
0.0062 |
- |
| 1.0328 |
32600 |
0.0336 |
- |
| 1.0360 |
32700 |
0.0352 |
- |
| 1.0391 |
32800 |
0.0043 |
- |
| 1.0423 |
32900 |
0.0148 |
- |
| 1.0455 |
33000 |
0.0042 |
- |
| 1.0486 |
33100 |
0.0044 |
- |
| 1.0518 |
33200 |
0.0155 |
- |
| 1.0550 |
33300 |
0.0251 |
- |
| 1.0581 |
33400 |
0.0092 |
- |
| 1.0613 |
33500 |
0.0207 |
- |
| 1.0645 |
33600 |
0.0074 |
- |
| 1.0676 |
33700 |
0.0352 |
- |
| 1.0708 |
33800 |
0.0071 |
- |
| 1.0740 |
33900 |
0.0083 |
- |
| 1.0771 |
34000 |
0.0119 |
- |
| 1.0803 |
34100 |
0.0073 |
- |
| 1.0835 |
34200 |
0.0282 |
- |
| 1.0866 |
34300 |
0.0097 |
- |
| 1.0898 |
34400 |
0.0062 |
- |
| 1.0930 |
34500 |
0.0127 |
- |
| 1.0962 |
34600 |
0.0117 |
- |
| 1.0993 |
34700 |
0.0163 |
- |
| 1.1025 |
34800 |
0.0221 |
- |
| 1.1057 |
34900 |
0.0145 |
- |
| 1.1088 |
35000 |
0.0073 |
- |
| 1.1120 |
35100 |
0.0065 |
- |
| 1.1152 |
35200 |
0.0333 |
- |
| 1.1183 |
35300 |
0.0048 |
- |
| 1.1215 |
35400 |
0.0169 |
- |
| 1.1247 |
35500 |
0.0045 |
- |
| 1.1278 |
35600 |
0.0272 |
- |
| 1.1310 |
35700 |
0.0065 |
- |
| 1.1342 |
35800 |
0.0026 |
- |
| 1.1373 |
35900 |
0.0139 |
- |
| 1.1405 |
36000 |
0.0219 |
- |
| 1.1437 |
36100 |
0.0132 |
- |
| 1.1468 |
36200 |
0.0087 |
- |
| 1.1500 |
36300 |
0.0038 |
- |
| 1.1532 |
36400 |
0.0322 |
- |
| 1.1563 |
36500 |
0.0109 |
- |
| 1.1595 |
36600 |
0.0059 |
- |
| 1.1627 |
36700 |
0.0072 |
- |
| 1.1658 |
36800 |
0.0026 |
- |
| 1.1690 |
36900 |
0.0115 |
- |
| 1.1722 |
37000 |
0.0288 |
- |
| 1.1754 |
37100 |
0.0018 |
- |
| 1.1785 |
37200 |
0.0091 |
- |
| 1.1817 |
37300 |
0.0095 |
- |
| 1.1849 |
37400 |
0.0066 |
- |
| 1.1880 |
37500 |
0.001 |
- |
| 1.1912 |
37600 |
0.0195 |
- |
| 1.1944 |
37700 |
0.0222 |
- |
| 1.1975 |
37800 |
0.0063 |
- |
| 1.2007 |
37900 |
0.0139 |
- |
| 1.2039 |
38000 |
0.005 |
- |
| 1.2070 |
38100 |
0.0075 |
- |
| 1.2102 |
38200 |
0.0095 |
- |
| 1.2134 |
38300 |
0.0083 |
- |
| 1.2165 |
38400 |
0.0031 |
- |
| 1.2197 |
38500 |
0.0026 |
- |
| 1.2229 |
38600 |
0.0018 |
- |
| 1.2260 |
38700 |
0.0116 |
- |
| 1.2292 |
38800 |
0.0037 |
- |
| 1.2324 |
38900 |
0.0146 |
- |
| 1.2355 |
39000 |
0.0118 |
- |
| 1.2387 |
39100 |
0.009 |
- |
| 1.2419 |
39200 |
0.0078 |
- |
| 1.2450 |
39300 |
0.0118 |
- |
| 1.2482 |
39400 |
0.0061 |
- |
| 1.2514 |
39500 |
0.0154 |
- |
| 1.2546 |
39600 |
0.0161 |
- |
| 1.2577 |
39700 |
0.0051 |
- |
| 1.2609 |
39800 |
0.0113 |
- |
| 1.2641 |
39900 |
0.0047 |
- |
| 1.2672 |
40000 |
0.0051 |
- |
| 1.2704 |
40100 |
0.0054 |
- |
| 1.2736 |
40200 |
0.0085 |
- |
| 1.2767 |
40300 |
0.0097 |
- |
| 1.2799 |
40400 |
0.009 |
- |
| 1.2831 |
40500 |
0.0081 |
- |
| 1.2862 |
40600 |
0.0091 |
- |
| 1.2894 |
40700 |
0.0204 |
- |
| 1.2926 |
40800 |
0.0102 |
- |
| 1.2957 |
40900 |
0.0124 |
- |
| 1.2989 |
41000 |
0.0051 |
- |
| 1.3021 |
41100 |
0.0081 |
- |
| 1.3052 |
41200 |
0.0011 |
- |
| 1.3084 |
41300 |
0.0023 |
- |
| 1.3116 |
41400 |
0.0024 |
- |
| 1.3147 |
41500 |
0.0155 |
- |
| 1.3179 |
41600 |
0.0087 |
- |
| 1.3211 |
41700 |
0.0339 |
- |
| 1.3243 |
41800 |
0.0044 |
- |
| 1.3274 |
41900 |
0.008 |
- |
| 1.3306 |
42000 |
0.0261 |
- |
| 1.3338 |
42100 |
0.0026 |
- |
| 1.3369 |
42200 |
0.0154 |
- |
| 1.3401 |
42300 |
0.0067 |
- |
| 1.3433 |
42400 |
0.0033 |
- |
| 1.3464 |
42500 |
0.0046 |
- |
| 1.3496 |
42600 |
0.011 |
- |
| 1.3528 |
42700 |
0.0054 |
- |
| 1.3559 |
42800 |
0.0154 |
- |
| 1.3591 |
42900 |
0.0016 |
- |
| 1.3623 |
43000 |
0.0261 |
- |
| 1.3654 |
43100 |
0.007 |
- |
| 1.3686 |
43200 |
0.0011 |
- |
| 1.3718 |
43300 |
0.0058 |
- |
| 1.3749 |
43400 |
0.0047 |
- |
| 1.3781 |
43500 |
0.0044 |
- |
| 1.3813 |
43600 |
0.0037 |
- |
| 1.3844 |
43700 |
0.0039 |
- |
| 1.3876 |
43800 |
0.028 |
- |
| 1.3908 |
43900 |
0.0043 |
- |
| 1.3939 |
44000 |
0.0016 |
- |
| 1.3971 |
44100 |
0.0074 |
- |
| 1.4003 |
44200 |
0.0042 |
- |
| 1.4035 |
44300 |
0.0025 |
- |
| 1.4066 |
44400 |
0.0257 |
- |
| 1.4098 |
44500 |
0.0173 |
- |
| 1.4130 |
44600 |
0.0019 |
- |
| 1.4161 |
44700 |
0.0024 |
- |
| 1.4193 |
44800 |
0.0037 |
- |
| 1.4225 |
44900 |
0.004 |
- |
| 1.4256 |
45000 |
0.0015 |
- |
| 1.4288 |
45100 |
0.0062 |
- |
| 1.4320 |
45200 |
0.0044 |
- |
| 1.4351 |
45300 |
0.0022 |
- |
| 1.4383 |
45400 |
0.0013 |
- |
| 1.4415 |
45500 |
0.0038 |
- |
| 1.4446 |
45600 |
0.0016 |
- |
| 1.4478 |
45700 |
0.0129 |
- |
| 1.4510 |
45800 |
0.0027 |
- |
| 1.4541 |
45900 |
0.0039 |
- |
| 1.4573 |
46000 |
0.003 |
- |
| 1.4605 |
46100 |
0.0015 |
- |
| 1.4636 |
46200 |
0.0005 |
- |
| 1.4668 |
46300 |
0.0031 |
- |
| 1.4700 |
46400 |
0.0076 |
- |
| 1.4732 |
46500 |
0.0008 |
- |
| 1.4763 |
46600 |
0.0019 |
- |
| 1.4795 |
46700 |
0.0013 |
- |
| 1.4827 |
46800 |
0.0024 |
- |
| 1.4858 |
46900 |
0.0103 |
- |
| 1.4890 |
47000 |
0.001 |
- |
| 1.4922 |
47100 |
0.0026 |
- |
| 1.4953 |
47200 |
0.0019 |
- |
| 1.4985 |
47300 |
0.002 |
- |
| 1.5017 |
47400 |
0.0023 |
- |
| 1.5048 |
47500 |
0.0019 |
- |
| 1.5080 |
47600 |
0.0032 |
- |
| 1.5112 |
47700 |
0.0201 |
- |
| 1.5143 |
47800 |
0.0023 |
- |
| 1.5175 |
47900 |
0.0019 |
- |
| 1.5207 |
48000 |
0.0016 |
- |
| 1.5238 |
48100 |
0.0017 |
- |
| 1.5270 |
48200 |
0.0077 |
- |
| 1.5302 |
48300 |
0.0188 |
- |
| 1.5333 |
48400 |
0.0014 |
- |
| 1.5365 |
48500 |
0.0057 |
- |
| 1.5397 |
48600 |
0.0012 |
- |
| 1.5428 |
48700 |
0.0021 |
- |
| 1.5460 |
48800 |
0.001 |
- |
| 1.5492 |
48900 |
0.0007 |
- |
| 1.5524 |
49000 |
0.0032 |
- |
| 1.5555 |
49100 |
0.0015 |
- |
| 1.5587 |
49200 |
0.0006 |
- |
| 1.5619 |
49300 |
0.0234 |
- |
| 1.5650 |
49400 |
0.0073 |
- |
| 1.5682 |
49500 |
0.002 |
- |
| 1.5714 |
49600 |
0.0009 |
- |
| 1.5745 |
49700 |
0.0015 |
- |
| 1.5777 |
49800 |
0.0019 |
- |
| 1.5809 |
49900 |
0.0036 |
- |
| 1.5840 |
50000 |
0.0013 |
- |
| 1.5872 |
50100 |
0.0036 |
- |
| 1.5904 |
50200 |
0.0011 |
- |
| 1.5935 |
50300 |
0.0044 |
- |
| 1.5967 |
50400 |
0.0013 |
- |
| 1.5999 |
50500 |
0.0009 |
- |
| 1.6030 |
50600 |
0.0026 |
- |
| 1.6062 |
50700 |
0.0016 |
- |
| 1.6094 |
50800 |
0.0179 |
- |
| 1.6125 |
50900 |
0.0005 |
- |
| 1.6157 |
51000 |
0.0016 |
- |
| 1.6189 |
51100 |
0.0111 |
- |
| 1.6220 |
51200 |
0.0043 |
- |
| 1.6252 |
51300 |
0.0008 |
- |
| 1.6284 |
51400 |
0.0027 |
- |
| 1.6316 |
51500 |
0.0037 |
- |
| 1.6347 |
51600 |
0.0039 |
- |
| 1.6379 |
51700 |
0.0295 |
- |
| 1.6411 |
51800 |
0.0041 |
- |
| 1.6442 |
51900 |
0.0026 |
- |
| 1.6474 |
52000 |
0.001 |
- |
| 1.6506 |
52100 |
0.0008 |
- |
| 1.6537 |
52200 |
0.0016 |
- |
| 1.6569 |
52300 |
0.0009 |
- |
| 1.6601 |
52400 |
0.0013 |
- |
| 1.6632 |
52500 |
0.0008 |
- |
| 1.6664 |
52600 |
0.0021 |
- |
| 1.6696 |
52700 |
0.0004 |
- |
| 1.6727 |
52800 |
0.0027 |
- |
| 1.6759 |
52900 |
0.0006 |
- |
| 1.6791 |
53000 |
0.0002 |
- |
| 1.6822 |
53100 |
0.0005 |
- |
| 1.6854 |
53200 |
0.0054 |
- |
| 1.6886 |
53300 |
0.0004 |
- |
| 1.6917 |
53400 |
0.0015 |
- |
| 1.6949 |
53500 |
0.0013 |
- |
| 1.6981 |
53600 |
0.0016 |
- |
| 1.7013 |
53700 |
0.0072 |
- |
| 1.7044 |
53800 |
0.0014 |
- |
| 1.7076 |
53900 |
0.0054 |
- |
| 1.7108 |
54000 |
0.0031 |
- |
| 1.7139 |
54100 |
0.0018 |
- |
| 1.7171 |
54200 |
0.0177 |
- |
| 1.7203 |
54300 |
0.0014 |
- |
| 1.7234 |
54400 |
0.0019 |
- |
| 1.7266 |
54500 |
0.0012 |
- |
| 1.7298 |
54600 |
0.0005 |
- |
| 1.7329 |
54700 |
0.0013 |
- |
| 1.7361 |
54800 |
0.0032 |
- |
| 1.7393 |
54900 |
0.0028 |
- |
| 1.7424 |
55000 |
0.0012 |
- |
| 1.7456 |
55100 |
0.005 |
- |
| 1.7488 |
55200 |
0.0059 |
- |
| 1.7519 |
55300 |
0.001 |
- |
| 1.7551 |
55400 |
0.0032 |
- |
| 1.7583 |
55500 |
0.0006 |
- |
| 1.7614 |
55600 |
0.01 |
- |
| 1.7646 |
55700 |
0.0014 |
- |
| 1.7678 |
55800 |
0.0012 |
- |
| 1.7709 |
55900 |
0.002 |
- |
| 1.7741 |
56000 |
0.0024 |
- |
| 1.7773 |
56100 |
0.0006 |
- |
| 1.7805 |
56200 |
0.002 |
- |
| 1.7836 |
56300 |
0.0019 |
- |
| 1.7868 |
56400 |
0.0004 |
- |
| 1.7900 |
56500 |
0.001 |
- |
| 1.7931 |
56600 |
0.0032 |
- |
| 1.7963 |
56700 |
0.0004 |
- |
| 1.7995 |
56800 |
0.0015 |
- |
| 1.8026 |
56900 |
0.0013 |
- |
| 1.8058 |
57000 |
0.0015 |
- |
| 1.8090 |
57100 |
0.0024 |
- |
| 1.8121 |
57200 |
0.0071 |
- |
| 1.8153 |
57300 |
0.0096 |
- |
| 1.8185 |
57400 |
0.0008 |
- |
| 1.8216 |
57500 |
0.0043 |
- |
| 1.8248 |
57600 |
0.0011 |
- |
| 1.8280 |
57700 |
0.0009 |
- |
| 1.8311 |
57800 |
0.0054 |
- |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.49.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}