arthur-neto/summarization_fine_tune_bbc_summary
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.4118
- Validation Loss: 0.3121
- Train Lr: 2e-05
- Epoch: 3
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': np.float32(2e-05), 'decay': 0.0, 'beta_1': np.float32(0.9), 'beta_2': np.float32(0.999), 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
| Train Loss | Validation Loss | Train Lr | Epoch |
|---|---|---|---|
| 1.4265 | 0.5026 | 2e-05 | 0 |
| 0.5826 | 0.3627 | 2e-05 | 1 |
| 0.4576 | 0.3325 | 2e-05 | 2 |
| 0.4118 | 0.3121 | 2e-05 | 3 |
Framework versions
- Transformers 4.57.1
- TensorFlow 2.19.0
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 36
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for arthur-neto/summarization_fine_tune_bbc_summary
Base model
google-t5/t5-small