emotion_roberta_weighted
This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2212
- Accuracy: 0.9315
- Precision: 0.9388
- Recall: 0.9315
- F1: 0.9331
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 0.2588 | 1.0 | 1000 | 0.2401 | 0.9185 | 0.9285 | 0.9185 | 0.9208 |
| 0.1856 | 2.0 | 2000 | 0.2177 | 0.9285 | 0.9348 | 0.9285 | 0.9300 |
| 0.144 | 3.0 | 3000 | 0.1773 | 0.928 | 0.9377 | 0.928 | 0.9301 |
| 0.1139 | 4.0 | 4000 | 0.2212 | 0.9315 | 0.9388 | 0.9315 | 0.9331 |
| 0.0937 | 5.0 | 5000 | 0.2179 | 0.9295 | 0.9349 | 0.9295 | 0.9310 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 17
Model tree for bellinghesam/emotion_roberta_weighted
Base model
FacebookAI/roberta-base