SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 7 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples | 
|---|---|
| English | 
 | 
| Math | 
 | 
| Art | 
 | 
| Science | 
 | 
| History | 
 | 
| Technology | 
 | 
| NONE | 
 | 
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("bew/setfit-subject-model-basic")
# Run inference
preds = model("Who was Cleopatra? She was a queen of ancient Egypt.")
Training Details
Training Set Metrics
| Training set | Min | Median | Max | 
|---|---|---|---|
| Word count | 6 | 14.1333 | 30 | 
| Label | Training Sample Count | 
|---|---|
| Art | 10 | 
| English | 10 | 
| History | 10 | 
| Math | 10 | 
| NONE | 15 | 
| Science | 10 | 
| Technology | 10 | 
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss | 
|---|---|---|---|
| 0.0067 | 1 | 0.1987 | - | 
| 0.3333 | 50 | 0.1814 | - | 
| 0.6667 | 100 | 0.128 | - | 
| 1.0 | 150 | 0.0146 | - | 
| 1.3333 | 200 | 0.006 | - | 
| 1.6667 | 250 | 0.0037 | - | 
| 2.0 | 300 | 0.0031 | - | 
| 2.3333 | 350 | 0.0027 | - | 
| 2.6667 | 400 | 0.0024 | - | 
| 3.0 | 450 | 0.0024 | - | 
| 3.3333 | 500 | 0.002 | - | 
| 3.6667 | 550 | 0.002 | - | 
| 4.0 | 600 | 0.0017 | - | 
| 4.3333 | 650 | 0.0019 | - | 
| 4.6667 | 700 | 0.0018 | - | 
| 5.0 | 750 | 0.0014 | - | 
| 5.3333 | 800 | 0.0013 | - | 
| 5.6667 | 850 | 0.0014 | - | 
| 6.0 | 900 | 0.0014 | - | 
| 6.3333 | 950 | 0.0014 | - | 
| 6.6667 | 1000 | 0.0016 | - | 
| 7.0 | 1050 | 0.0013 | - | 
| 7.3333 | 1100 | 0.0013 | - | 
| 7.6667 | 1150 | 0.0012 | - | 
| 8.0 | 1200 | 0.0014 | - | 
| 8.3333 | 1250 | 0.001 | - | 
| 8.6667 | 1300 | 0.0012 | - | 
| 9.0 | 1350 | 0.0014 | - | 
| 9.3333 | 1400 | 0.0012 | - | 
| 9.6667 | 1450 | 0.0012 | - | 
| 10.0 | 1500 | 0.0011 | - | 
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.17.0
- Tokenizers: 0.15.2
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 3
Model tree for bew/setfit-subject-model-basic
Base model
BAAI/bge-small-en-v1.5