my_awesome_wnut_model

This model is a fine-tuned version of distilbert/distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1117
  • Precision: 0.0
  • Recall: 0.0
  • F1: 0.0
  • Accuracy: 0.9592

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 147 0.2772 0.0 0.0 0.0 0.9110
No log 2.0 294 0.1972 0.0 0.0 0.0 0.9223
No log 3.0 441 0.1520 0.0 0.0 0.0 0.9420
0.2425 4.0 588 0.1341 0.0 0.0 0.0 0.9511
0.2425 5.0 735 0.1241 0.0 0.0 0.0 0.9538
0.2425 6.0 882 0.1184 0.0 0.0 0.0 0.9572
0.1179 7.0 1029 0.1154 0.0 0.0 0.0 0.9574
0.1179 8.0 1176 0.1131 0.0 0.0 0.0 0.9583
0.1179 9.0 1323 0.1120 0.0 0.0 0.0 0.9594
0.1179 10.0 1470 0.1117 0.0 0.0 0.0 0.9592

Framework versions

  • Transformers 4.56.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
3
Safetensors
Model size
65.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bn-tran-duc/my_awesome_wnut_model

Finetuned
(301)
this model