my_awesome_wnut_model
This model is a fine-tuned version of distilbert/distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1117
- Precision: 0.0
- Recall: 0.0
- F1: 0.0
- Accuracy: 0.9592
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 147 | 0.2772 | 0.0 | 0.0 | 0.0 | 0.9110 |
| No log | 2.0 | 294 | 0.1972 | 0.0 | 0.0 | 0.0 | 0.9223 |
| No log | 3.0 | 441 | 0.1520 | 0.0 | 0.0 | 0.0 | 0.9420 |
| 0.2425 | 4.0 | 588 | 0.1341 | 0.0 | 0.0 | 0.0 | 0.9511 |
| 0.2425 | 5.0 | 735 | 0.1241 | 0.0 | 0.0 | 0.0 | 0.9538 |
| 0.2425 | 6.0 | 882 | 0.1184 | 0.0 | 0.0 | 0.0 | 0.9572 |
| 0.1179 | 7.0 | 1029 | 0.1154 | 0.0 | 0.0 | 0.0 | 0.9574 |
| 0.1179 | 8.0 | 1176 | 0.1131 | 0.0 | 0.0 | 0.0 | 0.9583 |
| 0.1179 | 9.0 | 1323 | 0.1120 | 0.0 | 0.0 | 0.0 | 0.9594 |
| 0.1179 | 10.0 | 1470 | 0.1117 | 0.0 | 0.0 | 0.0 | 0.9592 |
Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 3
Model tree for bn-tran-duc/my_awesome_wnut_model
Base model
distilbert/distilbert-base-cased